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Abstract 

Technological advances in vehicle autonomy, vehicle connectivity and vehicle 

electrification are expected to revolutionize urban mobility by enabling seamless on-

demand mobility services. Such advances will facilitate vehicle and journey sharing, 

allow for better traffic control, and increase the accessibility of citizens to existing mass 

transit systems. In this work, we present the potential of transforming guideway based 

public transit (tram, light-rail, regional trains, BRT) to novel on-demand point-to-point 

services. To achieve this, we propose coupling technologically advanced small 

autonomous vehicles with existing expensive underutilized network infrastructures. We 

identify and characterize types of existing public transit services that may benefit from 

such a transformation. We develop decision aid tools to support tactical and operational 

planning. Specifically, such tools will assist in defining the characteristics of the vehicle 

fleet to be used and will allow determining the passenger demand load the proposed 

services may endure at peak hours. 

To examine the impact of the proposed transformation, we analyze the operations of 

the on-demand services over existing guideways and compare their performance to the 

currently offered public transit services. For this purpose, we develop two types of 

models. First, we develop an approximated representation of the dynamics of the system 

that is based on a batch-service queuing model. Such a representation allows fast 

performance evaluations and facilitate multiple comparisons and analyses. Second, we 

devise a finer representation of the system via a detailed event-based simulation model. 

The simulation model permits a comprehensive examination of various aspects of the 

system operations and allow a more thorough analysis of specific system settings. The 

results of this research prove that it is possible to satisfy demand while shorten waiting 

time of passengers by approximately 50% in some public transport systems. Furthermore, 

we succeed to measure more accurately the waiting times of passengers under a 

ridesharing policy, as compared to other mathematical models proposed in literature. 
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1. Introduction  

Technological advances in vehicle autonomy, vehicle connectivity and vehicle 

electrification are expected to revolutionize urban mobility by enabling seamless on-

demand mobility services. Such advances will facilitate vehicle and journey sharing, 

allow for better traffic control, and increase the accessibility of citizens to existing mass 

transit systems. Overall, such services promise to significantly improve the quality of 

service by providing “taxi-like” services at affordable costs (Chong et al., 2013; Spieser 

and Treleaven, 2014; Buehler, 2018). Nevertheless, technological, regulatory, moral, and 

cyber-security barriers are projected to be fully resolved only in two to three decades 

(Bansal and Kockelman, 2017; Fleetwood, 2017; Litman, 2018;).  

Public Transportation (PT) today comprised mostly from a fixed-timetable, fixed 

route service, that has both pros and cons. The main strength of the public transport 

service is its purpose itself – offer the masses an affordable way to commute and travel 

internally and externally from the city. Some public transport type, such as metro and Bus 

Rapid Transit (BRT), offer not only an affordable way to commute but also an efficient 

way to commute due to good level of service which expresses in high frequency services. 

On the other hand, the weaknesses of PT are vast. PT services are cheap due to subsidized 

policy of governments (i.e., expensive) and as will shown later in this paper, it follows 

with high capital and operational costs (and even more expensive in rapid transit such as 

metro service). Added to the high cost of PT, some PT services offer low frequency 

service which lead to bad level of service. Fixed-route, fixed-timetable PT services exist 

in our life for a long time and had been explored widely and deeply. The service is 

optimized as it can be, and one might ask how much more it can be optimized in the 

current configuration.    

New mobility services based on autonomous vehicle technology may be used at a 

large scale in dense city centers prior to the complete adoption of fully autonomous 

vehicles by deploying them in controlled environments. These are environments where 

interactions with pedestrians, human-driven vehicles, and other obstacles are limited and 

reduce the barriers of today’s adoption of autonomous vehicles. For example, in Personal 

Rapid Transit systems (PRT), small autonomous vehicles travel on guided pathways 

segregated from pedestrians and other traffic and provide passengers with on-demand 

point-to-point transportation between the stations of the system. The small size of the 

vehicles and automation enable them to operate at a higher average speed with 

considerably shorter headways compared to heavy rail, light rail, and bus systems. As a 



2 

 

result, the passengers' total trip times can be reduced significantly. In addition, the short 

headways allow operating at peak-hours in capacities equivalent to light-rail and busways 

(Carnegie and Hoffman, 2007). At off-peak hours, PRT can scale down by reducing the 

number of operated vehicles without compromising service quality. Furthermore, 

previous studies have shown that providing mass transit services using a large fleet of 

small vehicles may result with lower operational and maintenance costs as compared to 

traditional public transit services (Anderson, 2000; Kerr et al., 2005; Tirachini et al., 

2010; Juster and Schonfeld, 2013; Litman, 2015). 

Despite these advantages, only five such systems currently operate worldwide 

(Staniscia, 2018). Low adoption can be attributed to the high investment required to 

establish an infrastructure for PRT, estimated at $20M to $50M per mile (Carnegie and 

Hoffman, 2007), and the challenge of integrating such systems into the existing urban 

landscape (Vuchic, 1996; Jaffe, 2014).  

In this work, we examine the potential of transforming guideway based public transit 

(tram, light-rail, regional trains, BRT) to novel on-demand point-to-point services. To 

achieve this, we propose coupling technologically advanced small autonomous vehicles 

with existing expensive underutilized network infrastructures. Particularly, in the 

envisioned service, a fleet of small autonomous, electric vehicles will be installed on the 

existing infrastructure and will replace the existing fleet. A Passenger arriving at one of 

the systems’ stations, will inform the system about her/his desired destination and the 

system, in turn, will assign her/him to a vehicle which will provide direct service from 

the origin to the destination station. Contrarily to PRT, in this service, several passengers 

with the same destination that are waiting to be served, may be assigned to the same 

vehicle, subject to the vehicle capacity. In other words, the proposed service enables 

ridesharing that encourages this type of collective behavior.  

The proposed transformation comes with several economic benefits. In particular, 

reduced operational costs due to the use of autonomous vehicles and reduced 

development costs due to the use of existing infrastructure. To further expose the 

advantages of the proposed system, in this study, we focus on quality-of-service 

measures. Specifically, we will measure the impact of various system characteristics and 

operation policies on the total journey time of the passengers. Our goal is to reveal settings 

under which the transformed systems will provide significantly higher level of service, as 

compared to the currently operating systems.  
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The station-based structure of many public transit services generates a positive 

demand concentration effect, facilitating a higher potential for a collective behavior, i.e., 

ridesharing. As the envisioned service will be provided at stations (existing and new), we 

wish to represent the supply/demand dynamics of the proposed on-demand service with 

appropriate queuing models. Previous studies on PRT systems, have represented such 

dynamics via standard queuing models, assuming a single user first-come-first-served 

regime (Lees-Miller, 2016). However, such approach ignores the potential of ridesharing. 

In this study, we propose better approximation of the waiting times under ridesharing 

policies by employing a first-come-first-served batch service queue, the so-called “Israeli 

Queue” (Boxma et al. 2008).  

The contribution of this thesis is fourfold. First, we introduce a novel transformation 

concept that has not been studied before, i.e., utilizing existing public transit infrastructure 

to provide on-demand services via autonomous vehicles. Second, we develop an 

approximated representation of the dynamics of the system that is based on a batch-

service queuing model. Such representation allows fast performance evaluations and 

facilitates multiple comparisons and analyses. Third, we devise a finer representation of 

the system via a detailed event-based simulation model. The simulation model permits a 

comprehensive examination of various aspects of the system operations and enables a 

more thorough analysis of specific system settings. Fourth, we analyze multiple case 

studies, compare the existing services to the proposed on-demand service, and 

characterize types of existing public transit services that may benefit from the proposed 

transformation. 

The thesis is organized as follows: In Section 2, we review the current literature on 

public transit and on-demand services and particularly the PRT literature. Then, we 

review the current state of autonomous transportation services. Consequently, we provide 

a review of the quality-of-service measures common in the transportation literature and 

lastly, we identify the main gaps in the literature that this work is aiming to bridge. In 

Section 3, we present a queuing theory based approximate model which represents 

accurately the proposed on-demand service. In Section 4, we present the event-based 

simulation framework developed to represent in a finer resolution the dynamics of the 

existing public transit services and the proposed on-demand service. In Section 5, we 

present several real-world case studies and benchmark the existing services against the 

proposed on-demand services using the approximate model and the simulation model. 

Through these comparisons, we identify system characteristics under which the latter is 
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superior and highlight system configurations under which the approximate model is rather 

accurate. In Section 6 we conclude our findings and discuss several future research 

directions.  

 

2. Literature review 

Nowadays, the urban environment offers travelers a wide variety of shared mobility 

modes, including public transit, vehicle sharing services and on-demand transportation.  

This study proposes transforming some public transit services to on-demand services 

using Autonomous, Connected, Electrical PRT (ACE-PRT) vehicles. Accordingly, in this 

section, we review the transportation literature and position the proposed service with 

respect to the existing transit services. In Section 2.1, we review the public transit service 

literature and highlight the strengths and weaknesses of this transportation mode. In 

Section 2.2, we review the on-demand transit literature. In Section 2.3 we review the PRT 

literature. In Section 2.4, we review the state of the art in transportation services based on 

autonomous vehicles and the discuss the projections for the future, and particularly 

explain why this service will not be available in the near future. In section 2.5, we 

summarize the main quality of service measures commonly used in the transportation 

literature to better analyze the proposed ACE-PRT model. Finally, in Section 2.6 we 

outline the main gaps in the literature that this study is aiming to bridge. 

 

2.1. Public transit 

In this work, we refer to public transit as any transportation system that is available for 

use by the general public, providing transit services along fixed routes and operating 

according to predetermined schedules. In particular, this public transit type includes the 

following services: metro, train, tram, light rail and bus services. 

Public transit services were first introduced to the world thousands of years ago, 

starting from ancient Egypt, taking a big leap with the steam engine into today’s 

electrified vehicles (Wootton et al. 1995; Train History – History of Rail Transport, 

2020). The last decade has seen a decline in the usage of public transit. During 2014, 

public transit usage in Britain, France and Germany, was estimated to account for 12.8%, 

14.9%, and 15.2% of the total trips performed, respectively. Some studies claim that 

public transit has reached a saturation point because it has not improved significantly for 

many years (White, 2016).  
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The management and operation of public transportation consists of strategic, tactical, 

operational and real time control planning phases (Desaulniers and Hickman, 2007). The 

strategic planning phase, a well-known and old problem, focuses on the design of the 

routes and networks so as to satisfy passengers’ demand (Lampkin and Saalmans ,1967; 

Silman et al., 1974; Hasselström, 1981; Magnanti and Wong, 1984; Cordeau et al. 1998; 

Schöbel, 2012). The tactical planning phase determines the frequency of the routes and 

the timetable for a given network design (Caprara et al. 2007; Yang et al. 2008; Fischetti 

et al. 2009; Niu and Zhou, 2013; Barrena et al. 2014; Hassannayebi et al. 2016). The 

operational planning phase typically concerns the construction of vehicle and crew 

schedules. Lastly, real time control relates to methods applied to recover from 

deviations/disruptions from the planned schedules due endogenous and exogenous factors 

(Cordeau et al. 1998; Caprara et al. 2007). 

As mentioned before, PT was built to provide the masses a way to commute cheaply. 

This is the most significant strength of PT. Unfortunately, todays’ PT solution has a lot 

of weaknesses as population grows and it comprises of 2 main things: low level-of-service 

and poor cost effectiveness. First, the level of service may be poor due to low frequency 

services, inappropriate routes for the demand and a high-demand-low capacity service 

during peak hours. The second reason is cost effectiveness (monetization and energy 

consumption). PT in the urban areas are financially not cost effective as it is either 

overused or underused (according to peak hours) and therefore inefficient and almost 

every PT service is losing money because of their inefficiency (Rodrigue, 2016). As long 

as the urban population grows, today’s PT is becoming less utilize due to longer journey 

time, inefficiency (vacant spaces, Litman, 2015), high operating cost (Clark et al. 2007), 

and less relevant to more people due to fix guideways and timetables (Rodrigue, 2016). 

There are few other directions proposed for improvements such as minimizing the size 

measurements of urban transit vehicles as it is being recognized that infrastructure’s cost 

of small rapid transit is cheaper, energy efficient almost 3 times more than big rapid transit 

(Anderson, 2000; Kerr et al. 2005; White, 2016), and also cheaper 3 times more in 

operational cost (Anderson, 2000). This change in the vehicles’ measurements makes the 

smaller rapid transit potentially profitable (Anderson 1988; Anderson, 2000; Kerr et al. 

2005; Tirachini, 2010; Juster and Schonfeld, 2013; Lees-Miller, 2016; Muller and 

Anderson, 2018).  

The rural transit (e.g. heavy rail trains) had been critiqued for bad Level Of Service, 

LOS, (Velaga et al. 2012; Petersen, 2016) and lately is being criticized that it ought to 
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change its services in order to measure up with today’s transport alternatives 

(Rosenbloom, 2003). The transportation in rural areas are mainly consist of individual 

cars, low-frequency trains/buses and on-demand services such as dial-a-ride, shuttle vans, 

shared taxis (Velaga et al. 2012). 

When comparing LOS and efficiency, urban PT services are more developed and 

more suited for the urban areas. The main reason for that is the variety of Rapid Transit 

(RT) systems available: Metros, light rail, Bus Rapid Transit (BRT), and Personal Rapid 

Transit (PRT). The rapid transit system todays are offering high frequency mass 

transportation services e.g., Metros, BRT and in the future a new type of mass rapid transit 

such as Hyperloop (Taylor et al. 2016). With the rapid transit in hand, some optimizations 

are proposed such as flexible timetable in order to serve fully the passengers demands in 

the least time (Cadarso and Marin, 2012). Albeit, most of the urban PT is still comprised 

of buses, light rails, trams and has a lot of challenges and difficulties in the urban area. 

The most advanced PT, i.e., best level-of-service PT are the RT with high frequency 

service. The BRT is the top-tier (small to medium size) rapid transit PT which is available 

today in the world and proven to be relatively financially beneficial and with better 

journey time. 

The BRT, according to the Federal Transit Administration (FTA), is “a high-quality 

bus-based transit system that delivers fast and efficient service that may include dedicated 

lanes, busways, traffic signal priority, off-board fare collection, elevated platforms and 

enhanced stations”. The BRT is sometimes referred in terms of level of service as a more 

flexible, less costly (capital and O&M) to the Metro transit when the guideway is 

exclusive, to the Light Rail Train (LRT) when the guideway is partially exclusive, and to 

a tram when there is no exclusiveness of guideway (Levinson et al. 2003). The BRT is 

using an existing Intelligent Transportation System (ITS) and modifying an existing 

infrastructure or rather build a new one but still is being operated as a fixed-route, fixed-

timetable, non-autonomous mass transportation (Wright, 200). Furthermore, 

improvements for the BRT are mainly focused on building new guideways, purchasing 

more vehicles and upgrading traffic light synchronization (Currie, 2006; Hidalgo and 

Graftieaux, 2008; Nesmachnow  et al. 2019). It seems BRT to be a good alternative for 

today’s cars and motorcycles as it is more comfortable than today’s cars / motorcycles 

when reducing journey time or when proving that it is more economically beneficial to 

use this type of transport (Satiennam, 2016). To conclude – the BRT has a lot of strengths 

but potentially a lot of weaknesses (Nikitas and Karlsson, 2015) mainly because BRT is 
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most likely to take a piece from the auto-mobile’s infrastructure which is in short, still 

some people might not see as a better way to transport and will not transfer from their 

own private car to use the BRT. All BRT related literature agrees that BRT is a flexible 

mass transit system which holds the advantages of a bus and the advantages of a rail 

transit. The literature also acknowledge that BRT is more cost-effective than heavy rail 

trains because of infrastructure and difference in size. 

To conclude, building a new infrastructure for public transit with a fixed timetable, 

can be very complicated and not necessarily cost efficient or achieve best level of service. 

PT has a lot of weaknesses rather it is due to level of service or cost-efficient reasons. The 

top tier PT today is the BRT that satisfy both level-of-service constraint and cost 

effectiveness. Having said that, BRT services are just added to the current PT services 

and not replacing them. Therefore, one may observe that all other types of PT need to be 

re-examined for their efficiency and productivity and maybe be considered for 

replacement. 

2.2. On-demand transit 

In on-demand transit services, a fleet of vehicles is deployed to serve travel requests that 

are typically characterized by a pick-up location, a drop-off location and desired pick-up 

or drop-off time, often given in the form of a time-window. Multiple variates of the on-

demand services have been applied in recent years. These systems can be categorized by 

the following attributes. First, vehicles may be restricted to travel on some predefined 

routes or may be allowed to take any path on the transportation network. Second, pick-

up and drop-off locations may be limited to a finite set of locations in the service area 

(i.e. stations) or may be located at any point on the transportation network. Third, the 

arrival times of the vehicles to certain locations may be prescribed by predetermined 

schedules. Fourth, passenger requests may be known in advance or may only be revealed 

on-line while the system is operating. In other words, the underlying planning problem 

may be static or dynamic. Further analysis and characterization of various on-demand 

services can be found in Brake et al. (2007) and Errico et al. (2013).  

On-demand transit is also known as Demand Responsive Transit (DRT). The 

definition of DRT is being used differently in the DRT literature (Dial-a-a-Ride, 

autonomous Dial-a-Ride, flexible transit service, mobility on demand, autonomous on-

demand, flexible MoD etc.). DRT is referred to the utmost flexible transit system that 

mainly consider their passengers’ needs such as taxis (Luis Ferreira et al. 2007; Mulley 
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et al. 2009). Although the history of on-demand service starts with taxis as DRT, as 

technology developed, more DRT that serves masses amount of people succeeded to 

enable more flexibility in their use (Enoch et al. 2004). 

Flexibility in on-demand transit may variate, e.g., when taxis are acting as ride-

sharing services or buses that may take several passengers in a fixed route but will only 

stop in a station where there is a demand to pickup/drop-off. The Flexibility of a Transit 

System (FTS) is determined according to 5 main criteria: route, vehicle allocation, vehicle 

operator, type of payment and passenger category (Jenny Brake et al. 2006; Davison et 

al. 2012): 

 Route – fixed route / free route which determined according to the passenger need. 

 Vehicle allocation – frequencies of arrivals / allocating vehicle close to demand 

time.  

 Vehicle operator – varied amount of operators / one operator type. 

 Passengers category – special transport services / no restrictions. 

 Type of payment – one way to pay fares / different ways to pay fares. 

PT and DRT are both subsets of FTS where the PT is in the lower bound of the 

flexibility scale and DRT is in the upper bound. More DRT systems are now starting to 

show (e.g., yellow-taxi bus in the UK and minibuses shuttles in Tel-Aviv) and are 

technologically advanced as for cloud computation which is now available and allowing 

fast and on-demand computation (Mishra et al. 2012).  

One of the most known, advanced, and flexible type of DRT is the Dial-A-Ride 

Problem (DARP). The DARP is comprised of assigning vehicle routes and time 

schedules, in a minimum cost, according to a given demand matrix, allowing ridesharing. 

The routes and timetable are not fixed as it changes according to the demand matrix, 

allowing great flexibility to the passengers. The standard DARP assumes both static and 

deterministic information. In real-life scenarios, those assumptions do not apply as user 

behavior is unexpected and information is stochastic (Molenbruch et al, 2017). A DARP 

with a fixed route, where only requests and trip journeys (due to congestion) is stochastic, 

are addressed mainly as a PRT services.  

2.3. Personal Rapid Transit: 

In PRT systems, small autonomous vehicles travel on guided pathways to provide 

passengers with on-demand transportation between the stations of the system, typically, 

direct origin-to-destination journeys with no intermediate stops. The infrastructure 
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consists of a main “highway” and “offline stations” (Carnegie and Hoffman, 2007). This 

layout and type of service enables the vehicles to travel with no interruptions (Juster and 

Schonfeld, 2013). Furthermore, the small size of the vehicles enables them to operate at 

a higher average speed with considerably shorter headways compared to heavy rail, light 

rail and bus systems. As a result, the passengers' total trip times can be reduced 

significantly. In addition, the short headways allow operating at peak-hours in capacities 

equivalent to light-rail and busways (Carnegie and Hoffman, 2007). At off-peak hours, 

PRT can scale down by reducing the number of operated vehicles, without compromising 

the quality of service. A review of the history of the system and its operating policies is 

provided by Raney and Young (2005). 

In a survey on PRT deployment, Anderson (2000) concludes that PRT can function 

at a profit in small or large deployments and provide safe, reliable, all-weather 

transportation. Carnegie and Hoffman (2007) examine the potential viability of 

implementing PRT in New-Jersey. According to their report, PRT may provide 

considerably shorter journey times, may require relatively lower capital investment, and 

will me be operated at reduced operational and maintenance costs due to the use of small 

automated vehicles.  Juster and Schonfeld (2013), compared several transportation modes 

for the purple line in Washington, DC, including BRT, LRT and PRT. They conclude the 

PRT can provide better quality of service as compared to the alternatives at lower 

operational and maintenance costs.  

Despite the advantages of PRT systems and its presentation more than 50 years ago, 

only five such systems currently operate worldwide: Morgantown (West Virginia, USA), 

Rotterdam (The Netherlands), Masdar City (Abu Dhabi), Heathrow Airport (UK), and 

Suncheon Bay (South Korea) (Staniscia, 2018). Low adoption of PRT can be attributed 

to the high investments required for its establishment and implementation (estimated in 

the range between 20 to 50 $M/mile (Carnegie and Hoffman, 2007)) and the challenge of 

integrating such systems into the existing urban landscape (Vuchic, 1996; Jaffe, 2014).  

PRT has attracted scientific attention during the 1960’s and early 1970’s, where most 

studies focused on technological aspects in the design of the vehicles and the network, 

see Kovatch and Zames (1971), Cottrell (2005) and references therein. A ‘survey of PRT 

Vehicle Management Algorithms’ was presented in Priver (1974). However, as noted by 

the author, only a few of the 240 documents reviewed in that survey explicitly described 

algorithms applicable to the management of PRT systems.  
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New approaches regarding PRT optimization is elaborated in many research articles. 

One model proposes to model the design of a new PRT system as a combination of the 

Steiner problem and an assignment problem (Zheng and Peeta, 2015). The objective in 

this model is to minimize the guideway construction and user’s travel costs. The proposed 

model provides a solution in fast time (a network with 28 and 43 nodes is obtained by a 

Lagrangian-relaxation based algorithm in 30 minutes). Operational planning problem is 

also thoroughly discussed (Andréasson, 2003; Lees-Miller and Wilson, 2012). The 

objective of those research articles are to optimize the empty vehicle reallocation problem 

(measured by time / distance) and provide solutions such as heuristic methods. In another 

research, a stacker crane problem designed to manage a list of PRT requests solved with 

two Mixed Integer Linear Problem (MILP) formulations (Mrad and Hindri, 2015). The 

solution is optimized by minimizing the consumed energy. Few more research articles 

solve this problem with different approaches such as math-based constructive heuristic 

(Mrad et al., 2014), a honey-bee optimization algorithm (Fatnassi et al., 2016), and a MTZ 

and Flow-based solutions (Chebbi and Chaouachi ,2015). In all of these operational 

planning studies, ridesharing, congestion constraints and stochastic demand are ignored. 

Ride sharing could be critical for PRT system capacity and passenger experience 

(Lees-Miller et al., 2009). For a simple point-to-point system, ridesharing can 

significantly reduce the fleet size while providing a high level of service to the passengers. 

In a more recent research (Lees-Miller ,2016) , three lower bounds are described for the 

achievable mean passenger waiting time, based on an M/G/S queueing model, a heuristic 

for a static formulation and a Markov Decision Process (MDP) model. Also, in this 

research it is noted that the effect of ridesharing policies on passenger waiting times is 

not considered. 

2.4. Autonomous vehicle services 

Major advances in autonomous vehicle technologies have been made in recent years 

(Fagnant & Kockelman, 2014; Narayanan et.al., 2020). Many major car corporation (such 

as Tesla, Volvo, Fiat, Toyota), technology companies and service providers (Moovit, Via, 

Google, Uber, Lyft) invest more and more funding and resources in the development of 

driverless vehicles. Fully autonomous vehicles are expected to improve urban 

transportation as we know it. By enabling higher vehicle utilization, better 

synchronization and many ridesharing opportunities, a high adoption of driverless 

vehicles may reduce by up to two thirds the total number of vehicles on the roads today 
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(Spieser et.al., 2014). In addition, this trend is expected to result with a significant 

reduction in traffic congestion and traffic fatalities (Currie, 2018). 

Autonomous vehicles will enable a significant shift from privately owned vehicles to 

Mobility as a Service - MaaS (Narayanan et.al., 2020). Indications for this are given by 

the high participation of major mobility service providers in the development and testing 

of autonomous shuttles (UBER partners with Volvo, Google partners with Fiat, Intel 

acquiring Moovit). This has attracted the attention of the research community, multiple 

studies in recent years examine the planning and operation of Autonomous Mobility On 

Demand (AMOD) services (Narayanan et.al., 2020).  

Having a promising footprint in the future, Shared Autonomous Vehicles (SAV) is 

been broadly explored in a variety of fields (Narayanan et.al., 2020): demand, fleet, traffic 

assignment, vehicle assignment, vehicle redistribution, pricing, charging and parking. 

To determine demand in the SAV systems, it is commonly used to implement 

available data from different sources (Narayanan et.al., 2020). When data is not available, 

a Poisson distribution is implemented. 

Vehicle assignment problem can be approached with a heuristic solution or an 

optimization algorithm (Narayanan et.al., 2020). The former is mostly implemented with 

a rule of assigning the nearest vehicle to the request. The latter is rarely used because of 

the complexity of the problem which may take too much compute time. 

Vehicle repositioning, i.e., moving empty vehicles from low demand areas to high 

demand areas, is critical for optimizing these types of systems (Narayanan et.al., 2020; 

Vosooghi et.al, 2019). Four different approaches are proposed for solving the empty 

repositioning problem (Fagnant & Kockelman, 2014). The approaches are mainly moving 

unoccupied vehicles to adjacent blocks considering the size of the blocks, demand 

imbalance and randomness. 

Nevertheless, the promising future of autonomous vehicles is still far away. Major 

obstacles for the full adoption of autonomous vehicles pertain to regulatory, security, 

privacy, and moral aspects (Fagnant and Kockelman, 2015; Bagloee et al., 2016; 

Bonnefon et al., 2016). A recent survey by Iclodean et al. (2020) lists the existing 

autonomous shuttle-based transit service. Almost all systems mentioned, operate only one 

or two autonomous shuttles on fixed route of a few kilometers. That is, these systems 

serve for testing and demonstration and are far from providing large scale transit services. 

Recent projections regarding the autonomous vehicle market estimate that fully 

autonomous vehicles, i.e. SAE level 5 (Litman, 2017), will only become commercial at 
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the end on this decade. Furthermore, autonomous transportation is only estimated to 

become a dominant transportation mode in the three to four decades. This further 

emphasizes that for intermediate solutions that will enable the large-scale application of 

autonomous technologies in the very near future.  

 

2.5. Quality of service in public transportation 

The use of small autonomous vehicles is likely to result with significantly lower 

operational and maintenance costs. In particular, it will reduce significantly the need for 

driving staff and the small size of the vehicles will simplify considerably maintenance 

and repair operations (Tirachini et.al., 2010; Juster & Schonfeld, 2013; Lees-Miller, 

2016). Furthermore, the proposed transformation of existing infrastructures will require 

relatively minor capital investments. As the cost benefits are evident, the purpose of this 

study is to analyze and demonstrate the potential of on-demand services over existing 

infrastructures from a quality of service perspective. In this section, we briefly describe 

the main quality of service measures that are common in the transportation literature and 

focus on the measures that will be considered in this work. 

The most impactful factors to determine QOS are short waiting times, accurate and 

reliable timetable, price, trip duration, crowdedness and number of transfers (Moovit, 

2019). Other factors are also mentioned in the Highway Capacity Manual (HCM, 2010), 

and in  the Fellesson et al. 2012 survey made in 9 cities in Europe. Some of the factors 

are quantitative and can be measured “objectively” by the system, other measures are 

more qualitative and are subject to the individual preferences of the travelers. Naturally, 

most of the planning models existing in the literature are oriented towards quantitative 

measures (Molenbruch et al, 2017). For example: total passenger travel time (Yang, 

2008), total passenger waiting time (Lees-miller, 2016), and total number of transfers 

(Ferreira , 2007).  
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Figure 1- "Moovit" 2020 survey 

  

To conclude, we can see that the results from the field correlate with the “soft” factors 

which were assumed in the literature. Furthermore, Figure 1 displays the major factors 

for better LOS are waiting time and trip time, cost, comfort and safety. As can be 

observed, the major factors that influence passenger’s willingness to use public 

transportation are waiting time, trip time, cost, comfort and safety. 

Recall that in proposed on-demand service vehicles will provide direct trips to the 

passengers. Clearly, minimizing the total journey time of the passengers in this system is 

equivalent to minimizing their waiting times at their origin stations. Therefore, in the 

approximate model presented in Section 3, we focus our attention on the total waiting 

time.  However, the journey time of passengers in the exiting fixed route services is highly 

impacted by multiple stops at intermediate stations. Furthermore, in both types of services 

transfers are not considered. Therefore, to facilitate a meaningful comparison between 

the proposed services, we focus on the total journey time of the passengers. In other 

words, in this work, we take the total time passengers spend in the system as the main 

quality of service measure (Daszczuk et al. 2014; Shen and Lopes, 2015; Lees-Miller, 

2016). 

The arrival process of passengers to transportation systems are typically dynamic and 

stochastic. Therefore, to represent this nature and measure accordingly the waiting time, 

previous studies on on-demand services have either opted to use stochastic models, 

mainly queuing models, or have developed simulation models (Daszczuk et al. 2014; 

Shen and Lopes, 2015). With respect to queuing models, previous studies (e.g.: Lees-
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Miller, 2016) have applied standard queueing models such as M/M/1 or M/G/S. These 

models enable a simplified representation of the service and the waiting time. However, 

a fundamental assumption in these models is that each service request (of a single 

passenger or a group of passengers) is arriving and being served separately, typically, 

following a first-come-first-served regime. Namely, standard queuing models do not 

allow representing the joint service of several service requests. Alternatively, batch 

service queuing model do facilitate this required property. In particular, in this work we 

adopt the “Israeli Queue” model of Boxma et al. (2008) in order to approximate the 

waiting time in the proposed on-demand service. 

2.6. Literature gap:  

This thesis proposes a new paradigm that may enable the implementation of large-scale 

autonomous transit services in the near future. Several aspects in the proposed service 

have never been studied before. First, the potential impact of transforming existing fixed 

route public transit services to on-demand services is a novel approach. More generally, 

most Operations Research studies on transportation services focus on means to improve 

existing systems rather than examining the potential of replacing them by completely new 

transit solutions. Second, the transportation literature provides several modeling 

frameworks for representing and planning semi-flexible systems (Koffman, 2004; Potts 

et al., 2010; Errico et al. 2013), the notion of on-demand transit over fixed routes was not 

considered in these frameworks. The relatively recent work of Pimenta et al. (2017) is the 

first and only to examine on-demand ride-sharing services over fixed routes.  Lastly, the 

modeling of ridesharing services using batch service queuing models has not been done 

before. Such models facilitate more accurate approximation of waiting times in these 

highly stochastic systems. In particular, this work is the first to implement the Israeli 

Queue model in the context of transportation services.  

 

3. An approximate queuing model  

In this section we present an approximate queuing model for an on-demand transit service 

over fixed-route infrastructures. In section 3.1., we present the notations and the main 

assumptions made in the model. In section 3.2., we describe an approximate approach to 

calculate the rate of vehicles that enter and exit each station. In Section 3.3, we apply the 

Israeli Queue model to approximate the average waiting time and average journey time 
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in the system. In Section 3.4 we approximate the journey times in the existing fixed-route 

service and present a comparison to the proposed on demand service. 

3.1. Notations and assumptions 

Consider a fixed-route public transit service connecting a set of stations 𝑆, numbered in 

ascending order, i.e.,  1,2, … , |𝑆|, as depicted in Figure 2. In the transformed single-line 

system, the small autonomous vehicle can “turn around” at any station. In other words, 

when a vehicle exits a station it may travel oppositely to the direction it entered the station. 

Let 𝑡𝑖,𝑗 denote the direct travel time between stations 𝑖 and 𝑗. In particular, we assume 

that the travel time is the sum of direct travel times between all pairs of consecutive 

stations on the path between station 𝑖 and station 𝑗. That is, without loss of  generality, 

for 𝑖 < 𝑗 we have 𝑡𝑖𝑗 = 𝑡𝑗𝑖 = ∑ 𝑡𝑘,𝑘+1
𝑗−1
𝑘=𝑖 . In addition, we denote by 𝜆𝑖𝑗 the estimated rate 

of passengers who wish to travel from station 𝑖 to station 𝑗. Lastly, we denote by 𝑉 the 

number of small autonomous vehicles that will be deployed over the existing 

infrastructure and by 𝐶 their capacity.  

  

Figure 2- Illustration of a fixed-route public transit service with S stations 

We use the following simplifying assumptions in order to approximate the dynamics of 

the proposed service: 

Assumption 1: the time required for the autonomous vehicles to enter a station, debark 

passengers, embark passengers and exit the station is negligible with respect to the travel 

times between the stations. In other words, these processes are assumed to be 

instantaneous. 

Assumption 2: vehicles are assumed to be constantly travelling between stations of the 

system. In particular, a vehicle may be moving with passengers on board, namely 

conducting a service trip, or may be moving empty, for vehicle rebalancing purposes.   

Assumption 3: As soon as a vehicle enters a station, it is assigned with the following 

destination station. 

When passengers arrive at the station they announce their destination and enter a queue 

of passengers who wish to travel to that destination. When a vehicle departs to a certain 

destination, all waiting passengers who wish to travel to that destination embark the 

vehicle. 
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Assumption 4: in the approximate model, the capacity of the vehicles is non-binding. 

Assumption 5: in the approximate model, the travel time on each segment is constant. In 

particular, the travel speed is not affected by the number of vehicles that travel on a 

segment, i.e., the speed is not impacted by congestion. 

Assumption 6: for each station, the destinations of passengers wishing to travel from that 

station are uniformly distributed over all other stations in the system. 

3.2. Approximate vehicle arrival rates 

In this section, we propose an approach to approximate the rate of vehicles that enter\exit 

a station at a given period. Specifically, this requires estimating the rate of vehicles that 

provide service from\to a given station and the rate of empty vehicles relocated from/to a 

station.  

We begin by approximating the rates of vehicles induced by the demand, disregarding 

the available fleet. Specifically, let 𝑥𝑖𝑗 and 𝑦𝑖𝑗 denote the demand-driven rates of vehicles 

that travel between stations 𝑖 and 𝑗, providing service and relocating, respectively. Based 

on Assumption 1, Assumption 2, Assumption 3, the rate of vehicles that enter a station 

must equal the rate of vehicles that exits that station. That is: 

∑ 𝑥𝑗𝑖

𝑗∈𝑆

+ ∑ 𝑦𝑗𝑖

𝑗∈𝑆

= ∑ 𝑥𝑖𝑗

𝑗∈𝑆

+ ∑ 𝑦𝑖𝑗

𝑗∈𝑆

   ∀𝑖 ∈ 𝑆 (1) 

An underestimation of the rate of vehicles that would be required to serve passengers 

between stations 𝑖 and 𝑗 is simply obtained by dividing the passenger arrival rate by the 

vehicle capacity, that is: 

𝑥𝑖𝑗 =
𝜆𝑖𝑗

𝐶
    ∀𝑖, 𝑗 ∈ 𝑆 (2) 

We note that some stations may exhibit higher demand for departing vehicles, i.e. as 

origin stations, while other stations may exhibit higher demand for arriving vehicles, i.e., 

as destination stations. To simplify the following discussion, we denote by 𝑆−and 𝑆+ the 

sets of stations that require more departing and arriving vehicles, respectively. Formally, 

the sets are defined as follows 𝑆− = {𝑖| ∑ 𝑥𝑖𝑗𝑗∈𝑆 − ∑ 𝑥𝑗𝑖𝑗∈𝑆 ≥ 0},   

𝑆+ = {𝑖| ∑ 𝑥𝑗𝑖𝑗∈𝑆 − ∑ 𝑥𝑖𝑗𝑗∈𝑆 > 0}. Furthermore, the rate of vehicles that should be 

relocated to station 𝑖 ∈ 𝑆− is denoted by 𝐷𝑖 = ∑ 𝑥𝑖𝑗𝑗∈𝑆 − ∑ 𝑥𝑗𝑖𝑗∈𝑆 . Similarly, the rate of 

vehicles that should be relocated from station 𝑖 ∈ 𝑆+ is denoted by  

𝑂𝑖 = ∑ 𝑥𝑖𝑗𝑗∈𝑆 − ∑ 𝑥𝑗𝑖𝑗∈𝑆 . Next, in order to approximate the rates of vehicles that would 

be relocated between the stations we solve the following transportation problem. 
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𝑚𝑖𝑛 ∑ ∑ 𝑡𝑖𝑗𝑦𝑖𝑗

𝑗∈𝑆𝑖∈𝑆

 (3) 

𝑠. 𝑡.  

∑ 𝑦𝑗𝑖

𝑗∈𝑆+

= 𝐷𝑖   ∀𝑗 ∈ 𝑆− 
(4) 

∑ 𝑦𝑖𝑗

𝑗∈𝑆−

= 𝑂𝑖   ∀𝑖 ∈ 𝑆+ 
(5) 

𝑦𝑖𝑗 ≥ 0  ∀𝑖, 𝑗 ∈ 𝑆 (6) 

The objective function (3) sums the total rate of vehicle travel time that is spent in 

relocations. Fulfilling this objective function will allow to serve demand in the fastest 

way. Constraints (4) and Constraints (5) determine the rates of vehicles that should be 

relocated to and from a station, respectively. Lastly, Constraints (6) set the non-negativity 

of the relocation rates.   

Model (3)-(6) is essentially a transportation problem and therefore can be solved 

using the transportation simplex method. However, due to the structure of the network, a 

simple and efficient greedy procedure can be applied to solve it, Table 1 summarizes this 

procedure. Let 𝑛𝑒𝑥𝑡(𝑖, 𝑆) be a function that returns the item that follows item 𝑖 in the set 

𝑆.  

Table 1: A greedy algorithm for the empty vehicle relocation problem 

Initialize: 𝑦𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝑆, 𝑜 = min{𝑆+}, 𝑑 = min{𝑆−}, 𝛼=0, 𝛽 = ∑ 𝐷𝑖𝑗∈𝑆−  

While 𝛼 < 𝛽  

If 𝐷𝑑 < 𝑂𝑜 

𝑦𝑜𝑑 = 𝐷𝑑 

𝑂𝑜 = 𝑂𝑜 − 𝑦𝑜𝑑 

𝑑 = 𝑛𝑒𝑥𝑡(𝑑, 𝑆−) 

𝑒𝑙𝑠𝑒 

𝑦𝑜𝑑 = 𝑂𝑜 

𝐷𝑑 = 𝐷𝑑 − 𝑦𝑜𝑑 

𝑜 = 𝑛𝑒𝑥𝑡(𝑜, 𝑆+) 

𝛼 = 𝛼 + 𝑦𝑜𝑑 

Return: 𝑦𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑆 
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Note that the solution obtained by the greedy algorithm satisfies the well-know no-

crossing rule (McCann, 1999). Namely, for any 𝑖, 𝑖′ ∈ 𝑆+ such that 𝑖 < 𝑖′ and any 𝑗, 𝑗′ ∈

𝑆− such that 𝑗 < 𝑗′, 𝑦𝑖𝑗′ > 0 implies that 𝑦𝑖′𝑗 = 0. Furthermore, it can be shown that a 

solution having the no-crossing property is unique. In other words, any solution that 

deviates from the left most 𝒊 ∈ 𝑺+ relocates to the left most 𝒋 ∈ 𝑺− greedy rule, is bound 

to consist of crossings. As proven in McCann (1999) and references thereafter, 

considering the transportation problem on the line with convex cost functions, and 

particularly with a linear cost function, a solution satisfying the no-crossing rule is an 

optimal solution for the problem. 

Recall that the demand-driven vehicle rates that were presented above, were 

calculated only with consideration of the passenger demand. Next, we adapt the rates 

taking into account 𝑉, namely, the actual number of small autonomous vehicles that will 

be deployed in the system. Let, (𝑥𝑖𝑗 + 𝑦𝑖𝑗) ⋅ 𝑡𝑖𝑗 represent the ideal number of ACE-PRT 

(the proposed solution) vehicles that will be travelling between station 𝑖 and 𝑗. The total 

number of vehicles that should ideally be deployed in the system is then obtained by 

summing this expression over all pairs of stations: 

∑ ∑(𝑥𝑖𝑗 + 𝑦𝑖𝑗) ⋅ 𝑡𝑖𝑗

𝑗∈𝑆𝑖∈𝑆

 

Furthermore, let 𝑃𝑖𝑗 denote the ideal proportion of vehicles that should be travelling 

between stations 𝑖 and 𝑗, that is: 

 

𝑃𝑖𝑗 =
(𝑥𝑖𝑗 + 𝑦𝑖𝑗) ⋅ 𝑡𝑖𝑗

∑ ∑ (𝑥𝑖𝑗 + 𝑦𝑖𝑗) ⋅ 𝑡𝑖𝑗𝑗∈𝑆𝑖∈𝑆

 (7) 

 

Finally, we denote by 𝜋𝑖𝑗 the actual rate of vehicles that will be travelling between 

stations 𝑖 and 𝑗 and approximate it, taking into consideration the existing fleet size, as 

follows: 

𝜋𝑖𝑗 =
𝑉 ⋅ 𝑃𝑖𝑗

𝑡𝑖𝑗
 (8) 

3.3. Journey time calculation 

The journey time of passengers in fixed route service consists of three primary 

components: (1) waiting time at the origin station (2) direct travel times between the 

stations (3) stopping times, i.e. the times required to embark and disembark passengers at 



19 

 

intermediate stations. Recall that the ACE-PRT provides direct services, therefore, the 

journey time solely consists of (1) and (2). While (2) is predetermined (Assumption 5), 

the main challenge here is to estimate the waiting time of each passenger at his/her origin 

station, considering that ridesharing is allowed.  

Under a ridesharing policy, several users with the same destination, who arrived to 

the origin station at different times, may be served by the same vehicle. We wish to take 

this into account while approximating the expected waiting time at each station. For this 

purpose, we utilize the Israeli Queue model to approximate the waiting time at a single 

station and repeat the calculation for all stations. 

The Israeli Queue is a batch-service queue that follows a First-Come-First-Served 

regime. Users who arrive to the queue are assumed to belong to one of 𝑁different classes. 

When the server begins to serve the first user in the queue, it serves at the same time all 

other users of the same class waiting in the queue. Specifically, there is no limitation on 

the number of users that can be served simultaneously (as in Assumption 4). The service 

time is assumed to be independent of the number of users that are served simultaneously. 

In other words, the service rate is defined per batch, independent of its size. Furthermore, 

the Israeli Queue assumes gating in the end, i.e., users arriving at the queue while their 

class is being served are assumed join the served batch without any waiting time. 

 The model assumes for each class that the arrival of users to the queue follows a 

Poisson process with rate �̃� (identical for all classes). In addition,  the batch service time, 

𝐵, is assumed to be exponentially distributed with mean 1/𝜇 (also identical for all 

classes). 

The sojourn time in the Israeli Queue is calculated by first representing the sojourn 

time of the first user in the queue of each class. The waiting time of the first user in is 

Erlang distributed, considering this, the expected waiting time of the first user is: 

𝐸(𝑤𝑓𝑖𝑟𝑠𝑡) =
�̃� − 1

𝜇
(1 −

𝐾(�̃�−1)

𝐾(�̃�−2)
) 

where 𝐾(�̃�) = (∑
�̃�𝑘�̃�!

(�̃�−𝑘)!

�̃�
𝑘=0 )

−1

 and �̃�=�̃�/�̃�. Furthermore, the sojourn time of the first user 

is given by: 

𝐸(𝑠𝑓𝑖𝑟𝑠𝑡) =  𝐸(𝑤𝑓𝑖𝑟𝑠𝑡) + �̃� 

Next, the sojourn time of an arbitrary user in the queue is calculate by: 
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𝐸(𝑠𝑎𝑟𝑏) =
𝐸(𝑠𝑓𝑖𝑟𝑠𝑡) +

�̃�𝐸(𝑠𝑓𝑖𝑟𝑠𝑡
2 )

2
1 + �̃�𝐸(𝑠𝑓𝑖𝑟𝑠𝑡)

 

where 𝐸(𝑠𝑓𝑖𝑟𝑠𝑡
2 ) = 𝐸(𝑤𝑓𝑖𝑟𝑠𝑡

2 ) + 2𝐸(𝑤𝑓𝑖𝑟𝑠𝑡)�̃� + �̃�2  and  

𝐸(𝑤𝑓𝑖𝑟𝑠𝑡
2 ) = 𝐾(�̃�−1) (∑

�̃�𝑘(�̃� − 1)!

(�̃� − 1 − 𝐾)!

�̃�−1

𝑘=0

k(k + 1)

𝜇2
). 

The waiting time of passengers in a single station of the ACE-PRT system is 

approximated using the Israeli Queue model as described in what follows. The arrival rate 

of passengers wishing to travel from station 𝑖 is denoted by 𝜆𝑖.  By Assumption 6, the 

destinations of passengers wishing to travel from station 𝑖 are uniformly distributed over 

all other stations in the system. Namely, for any other station 𝑗, the rate of passenger 

wishing to travel from station 𝑖 to station 𝑗 is 𝜆𝑖𝑗 =
𝜆𝑖

|𝑆|−1
.  

We assume that at the same moment a vehicle departs from a station, a new vehicle 

is assigned to serve the next destination (class). The waiting time of the passengers who 

will board this vehicle consists of the time spent waiting in line until this vehicle was 

assigned (equivalent to waiting in the Israeli Queue) and the time until the assigned 

vehicle arrives at the station (equivalent to service time in the Israeli Queue). Using (8), 

the time until a new vehicle arrives in station 𝑖, is given by 𝐵𝑖 = (∑ 𝜋𝑗𝑖𝑗∈𝑆\{𝑖} )
−1

. Lastly, 

recall that the Israeli Queue assumes gating in the end. With respect to the ACE-PRT 

system, passengers who arrive at the station prior to the assigned vehicle and share the 

same destination, will board it. In Table 2, we summarize the relations between the 

notations of the Israeli Queue model and notations of a single station in the ACE PRT 

model. 

Table 2: notations of the Israeli Queue model vs. a single station in the ACE-PRT system 

 

  

Israeli Queue Station 𝒊 in the ACE-PRT 

�̃� |𝑆| − 1 

�̃� 𝜆𝑖 

𝜇 𝜇𝑖 = ∑ 𝜋𝑗𝑖

𝑗∈𝑆\{𝑖}

 

�̃� 𝐵𝑖 = ( ∑ 𝜋𝑗𝑖

𝑗∈𝑆\{𝑖}

)

−1
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To conclude, let 𝐸(𝑠𝑎𝑟𝑏
𝑖 ) denote the expected waiting time of passengers that wish to 

depart from station 𝑖. The expected journey time of passengers departing from station 𝑖 is 

then given by: 

𝐸(𝑠𝑎𝑟𝑏
𝑖 ) +

∑ 𝑡𝑖𝑗𝑗∈𝑆\{𝑖}

|𝑆| − 1
 (9) 

By summing (9) over all stations in the ACE-PRT system, and considering the rate 

relative demand for each station, the expected journey time in the system can be derived: 

∑ 𝜆𝑖𝑖∈𝑆 (𝐸(𝑠𝑎𝑟𝑏
𝑖 ) +

∑ 𝑡𝑖𝑗𝑗∈𝑆\{𝑖}

|𝑆| − 1
)

∑ 𝜆𝑖𝑖∈𝑆

 
(10) 

 

Next, we briefly present an approximate model for the journey time in fixed route 

services, which is later used for comparison purposes. In fixed route services, it is 

common to approximate the waiting as half the time interval between consecutive vehicle 

arrivals (for example, see Barrena et al. 2014). Let 𝑓 denote the frequency of service, then 

the expected time between vehicle arrivals is 
1

𝑓
 and the expected waiting time is 

approximated by 
1

2𝑓
. Furthermore, in fixed route services, a non-negligible portion of the 

journey time is due to intermediate stops. Let Δ denote a constant time required for each 

stop, and let 𝜃𝑖𝑗  denote the number of intermediate stops while traveling between station 

𝑖 and station 𝑗. That is, the time spent due to intermediate stops between stations 𝑖 and 𝑗 

is Δθij. Lastly, the direct travel times between stations 𝑖 and 𝑗 is denoted by 𝑡𝑖𝑗, as in the 

ACE-PRT model. The expected journey times of passengers who wish to travel from 

station 𝑖 to station 𝑗 is then given by: 
1

2𝑓
+ Δθij + 𝑡𝑖𝑗. The expected travel time of an 

arbitrary passenger in the fixed route services is:  

∑ ∑ 𝜆𝑖𝑗𝑗∈𝑆\{𝑖} (
1

2𝑓
+ Δθij + 𝑡𝑖𝑗)𝑖∈𝑆

∑ ∑ 𝜆𝑖𝑗𝑗∈𝑆\{𝑖}𝑖∈𝑆

 (11) 

3.4. Analytical comparison 

In this section, we present an initial analytical comparison between the approximated 

ACE-PRT model and the fixed route service. For this purpose, we present additional 

assumptions that enable further simplifying the model and highlighting the main 

differences between the two types of services. In particular, we study a special case in 
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which the travel time between any pair of neighboring stations is identical, i.e. 𝑡𝑖,𝑖+1 =

𝑡 ∀𝑖 ∈ {1 … |𝑆 − 1|} and the rates of passenger wishing to travel between any pair of 

stations are identical, that is 𝜆𝑖𝑗 = 𝜆 ∀𝑖, 𝑗 ∈ 𝑆:  𝑖 ≠ 𝑗.   

Under these assumptions, Equation (2) reduces to 𝑥𝑖𝑗 = ⌈
𝜆

𝐶
⌉  ∀𝑖, 𝑗 ∈ 𝑆. As a result, due to 

the fully symmetric demand pattern, there is no need for relocating empty vehicles, that 

is 𝑦𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝑆. Thus, Equations (7)-(8) reduce to:  

𝑃𝑖𝑗 =
(⌈

𝜆
𝐶⌉) ⋅ 𝑡 ⋅ (𝜃𝑖𝑗 + 1)

∑ ∑ (⌈
𝜆
𝐶⌉) ⋅ 𝑡 ⋅ (𝜃𝑖𝑗 + 1)𝑗∈𝑆\{𝑖}𝑖∈𝑆

=
(𝜃𝑖𝑗 + 1)

∑ ∑ (𝜃𝑖𝑗 + 1)𝑗∈𝑆\{𝑖}𝑖∈𝑆
 (12) 

and 

𝜋𝑖𝑗 = 𝑉 ⋅
(𝜃𝑖𝑗 + 1)

∑ ∑ (𝜃𝑖𝑗 + 1)𝑗∈𝑆\{𝑖}𝑖∈𝑆

⋅
1

𝑡 ⋅ (𝜃𝑖𝑗 + 1)
=

𝑉

𝑡
⋅

1

∑ ∑ (𝜃𝑖𝑗 + 1)𝑗∈𝑆\{𝑖}𝑖∈𝑆

 (13) 

Hence, the rate of vehicles that enter station 𝑖, in this special case is: 

𝜇𝑖 = ∑ 𝜋𝑗𝑖

𝑗∈𝑆\{𝑖}

=
𝑉

𝑡
⋅

|𝑆| − 1

∑ ∑ (𝜃𝑖𝑗 + 1)𝑗∈𝑆\{𝑖}𝑖∈𝑆

 (14) 

Noting that 𝜃𝑖𝑗 = |𝑗 − 𝑖| − 1, the sum in the denominator of Equation (14) can be written 

as: 

∑ ∑ (𝜃𝑖𝑗 + 1)

𝑗∈𝑆\{𝑖}𝑖∈𝑆

= 2 ⋅ ∑ ∑ (𝑗 − 𝑖)

|𝑆|

𝑗=𝑖+1

|𝑆|−1

𝑖=1

= 2 ⋅ ∑ 𝑖 ⋅ (|𝑆| − 𝑖)

|𝑆|−1

𝑖=1

=

=
(|𝑆| + 1) ⋅ |𝑆| ⋅ (|𝑆| − 1)

3
 

Reinserting this expression in to Equation (14), we obtain: 

𝜇𝑖 =
𝑉

𝑡
⋅

3

(|𝑆| + 1) ⋅ |𝑆|
 (15) 

Finally, the expected time between vehicle arrivals at station 𝑖, in this special case, is: 

𝐵𝑖 =
(𝑡 ⋅ (|𝑆| + 1 ) ⋅ |𝑆|)

3𝑉
 (16) 

Observing Equation (16), it becomes evident that in the case of equally distributed 

stations with uniform arrival rates of passengers (i.e. the special symmetric case), the 

expected time between arrivals: 

 Increases linearly with the travel time between neighboring stations 

 Decreases linearly with the number of vehicles distributed in the system 

 Increases quadratically with the number of stations in the system.   
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Next, we compare the expected journey times in the ACE-PRT system and the fixed route 

services under the special symmetric case. For the ACE-PRT, Equation (10) reduces to: 

∑ 𝜆(|𝑆| − 1)𝑖∈𝑆 (𝐸(𝑠𝑎𝑟𝑏
𝑖 ) +

𝑡 ∑ (𝜃𝑖𝑗 + 1)𝑗∈𝑆\{𝑖}

|𝑆| − 1
)

∑ 𝜆(|𝑆| − 1)𝑖∈𝑆

 

= 𝐸(𝑠𝑎𝑟𝑏) +
𝜆 ⋅ 𝑡 ⋅

(|𝑆| + 1) ⋅ |𝑆| ⋅ (|𝑆| − 1)
3

𝜆 ⋅ |𝑆| ⋅ (|𝑆| − 1)
= 𝐸(𝑠𝑎𝑟𝑏) + 𝑡 ⋅

(|𝑆| + 1)

3
 

 

For the fixed route services, Equation (11) reduces to: 

 

∑ ∑ 𝜆𝑗∈𝑆\{𝑖} (
1

2𝑓
+ Δθij + 𝑡(θij + 1))𝑖∈𝑆

∑ ∑ 𝜆𝑗∈𝑆\{𝑖}𝑖∈𝑆

 

 

=
𝜆 (

|𝑆|(|𝑆| − 1)
2𝑓

+ Δ
|𝑆| ⋅ (|𝑆| − 1) ⋅ (|𝑆| − 2)

3 + 𝑡
(|𝑆| + 1) ⋅ |𝑆| ⋅ (|𝑆| − 1)

3 )

𝜆|𝑆|(|𝑆| − 1)
 

 

=
1

2𝑓
+ Δ

(|𝑆| − 2)

3
+ 𝑡

(|𝑆| + 1)

3
   

From the obtained equations it becomes evident that the expected onboard travel time is 

identical in both systems, and therefore it is sufficient to compare the remaining 

components of the journey time. Namely, the waiting in the ACE-PRT system should be 

benchmarked against the expected waiting time in the fixed route service plus the 

expected time spent during intermediate stops.  

To further explore the differences analytically, the expected waiting time in the ACE-

PRT system should be expressed in terms of the system parameters. However, the 

expressions obtained for small “toy” systems are already hard to handle. To demonstrate 

this, we present in Table 3, the expected waiting times as a function of 𝐵 and 𝜆 for systems 

with two and three stations. A comparison for systems with more stations is performed 

numerically. The outcome of this numerical comparison is presented in Section 5. 
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Table 3: the approximated average waiting times for “toy” systems with 2 and three stations 

|S| 𝑬(𝒔𝒂𝒓𝒃) 

2 
4𝜆2̂𝐵3 + 5�̂�𝐵2 + 2𝐵

2𝜆2̂𝐵2 + 1 + 2�̂�B 
 

3 
20𝜆2̂𝐵3 + 9�̂�𝐵2 + 2𝐵 + 10𝜆3̂𝐵4 + 8𝜆3̂𝐵3

12𝜆2̂𝐵2 + 2 + 6�̂�B + 12𝜆3̂𝐵2
 

 

To conclude, as the number of stations increase the expected waiting time in the ACE-

PRT increases significantly (at least quadratically) while the expected time in fixed route 

service increases moderately with respect to number of stations and the intermediate stop 

time. Based on these insights, we conjecture that the transition to ACE-PRT systems will 

be beneficial in terms of the passenger journey times in cases where the travel time 

between consecutive stations is not very long, the stopping times are significant and, most 

importantly, the number of stations on the line are not too many. Naturally, as the number 

of ACE-PRT vehicles increases, better service can be provided. 

In the following section, we present a simulation model developed to enable a more 

detailed analysis of the ACE-PRT system. In Section 5, using the simulation, we further 

explore scenarios in which the ACE-PRT system may be superior based on data obtained 

from real-world systems.   
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4. An Event-Based Simulation Model 

In this section we present an event based simulation model that represents in finer details 

the operations of the ACE-PRT services. This includes: general passenger arrival 

processes, passenger assignment policies and empty vehicle relocation strategies. This 

simulation model is devised in order to validate the results obtained by the approximate 

model while relaxing several modeling assumptions made in the approximate model. In 

particular, it will enable testing the proposed services under multiple system settings. 

Namely, we case study several existing real-world systems and examine how the ACE-

PRT services perform under changing demand loads while varying the fleet sizes, the 

vehicles capacities, and the required vehicle headways. 

4.1. Input 

The event-based simulation model is based on 5 main pillars: system infrastructure, 

vehicles, demand matrix, passenger behavior, and reallocation policy of empty ACE-PRT 

vehicles. In the following paragraphs, we will describe the 5 input pillars. 

The system infrastructure input is represented as a line of stations. The line of stations 

is configured according to the number of stations, distance between each pair of stations, 

number of embarking berths, number of waiting berths, and segment capacity (of 

vehicles) between each 2 adjacent stations. To avoid congestion, segment capacity 

between 2 adjacent stations will be determined by the Greenshields function (Van Aerde 

and Rakha, 1995; Rakha and Crowther, 2002): (𝑣𝑓 =
𝑣𝑓

𝑘𝑗
𝑘 , where: 𝑣𝑓 is the free 

speed, 𝑘𝑗  the jam density,and 𝑘 is density). To use the Greenshields function, we 

determine the free-speed velocity and the jam-density. As to the definition of a station in 

the system, each station is well described by the following attributes: number of 

embark/alight berths, 1 waiting berth with unlimited capacity (in case all embark/alight 

berths are full). 

The second pillar of the event-based simulation model is the vehicles. The vehicles 

are the “servers” in this type of model and the fleet size is equivalent to the number of 

“servers”. Each vehicle will be represented by: vehicle capacity (how many passengers 

per a ride is allowed), vehicle speed, current position, future position. The vehicle velocity 

will be determined according to the average speed of the existing public transportation 

vehicles which currently operate in the infrastructure case studies. The initial position of 

a vehicle is manually determined in the beginning of the simulation. Future position of a 
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vehicle is determined by either passenger destination request or according to the empty 

vehicle relocation policy. 

The third pillar is the passenger requests. In particular, the passenger requests are 

represented by Origin-Destination matrices, which represent the arrival rate of passengers 

wishing to travel between each pair of Origin-Destination stations, at each period of the 

day. Throughout this study, we assume the passenger arrivals follow a Poisson process.  

The fourth pillar is the passenger behavior. Arriving passengers leave the system in 

one of two options. The first, they exit the system in their destination station after being 

served. The second, passengers who wait in their origin station more than a pre-

determined abort time, abandon the system without being served. In the simulation, we 

monitor the number of aborting passengers as one of the key performance indicators of 

the system. 

The fifth and last pillar is the reallocation policy of the empty ACE-PRT vehicles. 

Every fixed period of time, the empty cabin relocation procedure will be according to the 

proposed algorithm in section 3.2. The reallocation will take place repetitively after an 

arbitrary amount of time. Because the system is dynamic, and supply & demand for each 

station changes rapidly, an estimated demand forecast to optimize the reallocation policy 

is considered.  

4.2. Performance measures 

One of the goals of the thesis is to explore if the new proposed system will increase the 

quality of service from the current systems that exist today. As seen in section 2.5, 60% 

of the survey participant declared that shorter waiting time, shorter journey time, less 

crowdedness, on-time schedule, good pricing and less transfers will increase the quality 

of service and therefore will increase the use of public transportation. The ACE-PRT 

system, by definition, decreases the number of transfers to 0. Accurate schedule and 

pricing, may also be optimized with a proper implementation of the ACE-PRT system. 

The measurements that needs to be verified is the journey time, crowdedness, and the 

waiting time of passengers (average and max waiting time) in certain use cases. To also 

determine the type of use-cases where the proposed system is feasible (i.e., with no traffic 

jams) and better-perform, the following use-cases parameters will be monitored: total 

number of passengers in the system, number of passengers leaving the system without 

being served, average vehicle utilization (vacant / occupied), number of passengers per a 

trip distribution, segment occupancy to ensure realistic vehicle flows and speeds that 
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allow safely operating the system with the Greenshields model (Van Aerde and Rakha, 

1995; Rakha and Crowther, 2002), and the time the system is under-saturated and over-

saturated. The last two measurements, is to decide if the system performance is feasible. 

If the time the segments are over-saturated with vehicles for a significant amount of time, 

the system is clogged and the assumed velocity of vehicles is no longer valid and 

therefore, the proposed model is not feasible for the specific use-case. 

4.3. Main Framework: 

The event-based simulation framework is comprised of an initialization phase, the main 

event-based procedure, and a termination process. The simulation is driven by an event 

list, a time ordered set of events that are planned to occur in the simulation. At each step 

the earliest event in the list is taken out and it triggers a process that may change the state 

of the system. Such process typically also leads to the creation of new events that are 

inserted to the event list. This iterative procedure continues until some stopping criteria 

are met. Then, a post-processing procedure is triggered and the main performance 

measures are returned. In the initialization phase, the various input components are 

incorporated, including: infrastructure characteristics, vehicle attributes (including their 

initial positions), Origin-Destination matrices representing the passenger requests. Using 

this information, an initial list of passenger arrival events is created. A flow chart 

representing the main simulation procedure is presented in Figure 3. The notations used 

to describe the framework and its components are summarized in Table 3. 

 

Figure 3 - Event-based simulation main framework 
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Table 3: notations of the system’s states 

Notation Attribute State 

𝑆𝑠 Station   Vacant vehicles in berths 

 Future arrivals of vehicles 

 Passenger queue 

 Vehicles in waiting berths 

 Arrival list of passengers 

 Total current demand 

𝐹𝑓 Vehicle  List of passengers 

 Last vacant time 

 Last occupant time 

 Total vacant time 

 Velocity 

 Starting station 

 Current station 

 Future station 

 Current segment 

𝑃𝑝 Passenger  Enter time to station 

 Time until served 

 Exit time from station 

 Origin station 

 Destination station 

 Projected abort time 

 Served by vehicle 

𝑙𝑠𝑦𝑠𝑡𝑒𝑚 Total number of passengers in the 

system thus far 
0 < 𝑙𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑙𝑖𝑠𝑡 

𝑙𝑚𝑜𝑑𝑒𝑙 Current number of passengers in the 

system 
0 ≤ 𝑙𝑚𝑜𝑑𝑒𝑙 ≤ 𝑙𝑠𝑦𝑠𝑡𝑒𝑚 

𝑇 Model run time 0 ≤ 𝑇 ≤ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 

𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 Total waiting time of passengers 

0 ≤ 𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ≤ ∑ 𝐴𝑏𝑜𝑟𝑡 𝑡𝑖𝑚𝑒

|𝑃|

𝑖=1

 

𝑀𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 Max waiting time 0 ≤ 𝑀𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ≤ 𝐴𝑏𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 

𝑁𝑎𝑏𝑜𝑟𝑡𝑠 Number of aborts 0 ≤ 𝑁𝑎𝑏𝑜𝑟𝑡𝑠 ≤ |𝑃| 

𝑇𝑣𝑎𝑐𝑎𝑛𝑡 𝑡𝑖𝑚𝑒 Total vacant time of vehicles 

0 ≤ 𝑇𝑣𝑎𝑐𝑎𝑛𝑡 𝑡𝑖𝑚𝑒 ≤ ∑ 𝑇

|𝐹|

𝑖=1

 

𝑁𝑡𝑟𝑖𝑝𝑠 Number of trips 0 ≤ 𝑁𝑡𝑟𝑖𝑝𝑠 

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖 Current number of vehicles on 

segment i 
0 ≤ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖 ≤ |𝐹| 

 

Six types of events drive the simulation: (1) passenger arrival, (2) vehicle entry to a 

station, (3) vehicle entry to a station’s berth, (4) reallocation of empty vehicles, (5) 

passenger abort and (6) road-segment update. Each of these event types triggers a 

different process, as will be described in the following section. The relation between these 

event types is summarized by an events graph if Figure 4.   
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Figure 4 - Event-based simulation event relationships 

4.4. Initialization & Processes: 

In the initialization phase, attributes of the system, infrastructure, and vehicles are 

determined. For the system values, stations are constructed, each with an arrival list 

according to the demand matrix, number of embarking berths according to length of 

stations, and unlimited number of off-line waiting berths. As part of the system and 

infrastructure, distance between stations matrix is imported according to the case study. 

For each segment between two adjacent stations, the saturation limit is calculated 

according to the Greenshields model. The vehicles attributes that are set include a 

passenger capacity limit, average velocity and initial position. Then, an initial event list 

is created consisting of passenger arrival events, each passenger is characterized by an 

arrival time, origin station, destination station, and waiting time limit. The event list also 

contains a reallocation event, which generates the following relocation event, in a periodic 

manner. Vehicles are distributed uniformly across stations. Lastly, the performance 

measures and time indicators are initialized. The initialization process is summarized in 

Figure 5. 
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Figure 5 - Event-based simulation initialization 

Next we describe the processes that are triggered due to the occurrence of each event 

type. The first event type represents a passenger arrival to the system. The arrival of a 

new passenger is determined according to the arrival list, constructed according to the 

demand matrix per use case. When a new passenger arrives to the system, the passenger 

enters its origin station with a declared destination station and abort time. In accordance, 

a passenger abort event (event type #5) is added to the event list. With the entry of the 

passenger, the total number of passenger in the system and the current number of 

passengers in the model is updated accordingly. Once the passenger enters the station, the 

passenger will continue in one of two possibilities: (1) waiting in the station to board a 

vehicle by opening a new queue of passengers or joining an existing queue with the same 

destination (2) being served immediately by a vacant vehicle. This creates two new events 

to the event list: A vehicle entry to a station (event type #2) , and Road-segment update 

(event type #6). In addition the following performance attributes are updated: total 

waiting time of passengers, total vacant time of vehicles, number of trips and current 

number of vehicles on  a segment. Finally, when a passenger is served, the vehicle departs 

from the origin station and clears a berth, if there are vehicles waiting in the waiting berth 

of the origin station, a vehicle entry to a berth event (event Type #3) is added to the event 

list to be executed immediately. The process that is triggered due to the occurrence of a 

passenger arrival event is presented as a flow chart in Figure 6. 
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Figure 6 - Event-based simulation passenger arrival 

The second event type is vehicle entry to a station (event type #2). When a vehicle 

enters a station, if the station is not full with vehicles, the entry of a vehicle to berth will 

be added to the event list and will be executed immediately (event type #3). If the station 

is overloaded with vehicles, the vehicle will enter the waiting berth and wait to its turn to 

enter the station’s berth, see Figure 7. 

 

 

Figure 7 - Event-based simulation Vehicle enters station 

The third event type is the vehicle entry to a berth. A vehicle that enters a berth might be 

with or without passengers on board. If passengers are on board, they embark 

immediately, their elasped journey time is updated, and the vehicle becomes vacant. 

Following, if there are waiting passengers at the station, they will embark immediately 
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the vehicle that has just become vacant. This leads to the creation of two new events: 

vehicle entry to a station (event type #2) and road-segment update (event type #6). The 

process that is triggred due to the occurrence of vehicle entery to a berth is presented in 

Figure 8. 

 

Figure 8 - Event-based simulation vehicle enters berth 

The fourth event type represents the preodic reallocation of empty vehicles. The 

empty vehicle reallocation is operated according to the greedy algorithm presented in 

section 3.2. This process is executed recurently according to a predifined time interval. 

That is, when such an event of this types occurs, it genereates the following event of this 

time, a time interval later. The process begins with the calculation the desired 

redistribution of empty vehicles. According to the result of the desired distribution, empty 

vehicles are designated to their new stations. For each vehicle to be relocated, two new 

events are added to the event list: road-segment update and vehicle entry to a station. See 

Figure 9. 
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Figure 9 - Event-based simulation empty vehicle relocation 

  

The fifth event type is the passenger abort. For every arriving passenger, an abort time 

thereshold is defined, represening the maximum time the passenger is willing to wait for 

a vehicle before she abandons the system. When this event occurs, if the passenger has 

not been served yet, she is removed from the passenger queue at the origin station, and 

the number of aborting passengers is increased by one. 

 

Figure 10 - Event-based simulation passenger abort 

The sixth and last process is the Road-segment update. Updating continuously the 

segment-vehicle load is crucial to determine if the system is over-saturated with vehicles, 

and to ensure there is a free flow velocity of vehicles. Every segment has its limit for 

number of vehicles that it can hold, and once the number of vehicles on that segment is 

passing this limit, it is monitored by the simulation, including the duration of such 

oversatutration. At the occurance of this event, i.e. the eneterance to the segment, we 

check, whether this the last segment on the current route of the vehicle. In case not, a new 
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Road segment event is inserted to the event list, representing the enterence time to the 

following segment, see Figure 11. 

 

Figure 11 - Event-based simulation road-segment update 

5. Numerical Experiments 

In this section we describe the numerical experiment we have conducted in order to test 

the proposed service, using both the approximate model and the simulation model. In 

Section 5.1. we present the systems we have used as case studies. We define the values 

of the global parameters used throughout the numerical experiment and detail system 

specific values for each case study. In Section 5.2 we present and discuss the obtained 

results. 

5.1. Case studies 

We have selected several systems to use as case studies, based on available data and so 

as to create a variety of systems. That is, our aim was to examine a range of settings, 

considering the number of stations on the line, the distance between the stations, the 

arrival rate of passengers and various demand patterns. In particular, we have tested the 

following systems: Haifa Metronit red line, Tel-Aviv suburban train, Berlin M2, Berlin 

M4, Boston Blue Line, Boston Orange Line, Bukarest M41.  

The case studies are based on data from official sources, mainly focusing on high-

demand rush hour periods to test the proposed model under challenging conditions. This 

provides a minimum benchmark for the model's service quality, as it does not rely on 

predicted demand or rush hour patterns. Particularly, the attributes of the proposed 

simulation model were determined in a conservative manner, to ensure no advantages 

will be given to the proposed service. 
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The number of stations and distance between stations are determined by the observed 

infrastructure case study in the simulation. Number of embarking berths per station were 

determined according to a rough estimation of 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝐶𝐸−𝑃𝑅𝑇 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
 . Specifically, “Metronit” – 18.75m, Tram 

/ MetroTram / Subway – 40M, suburban train – 187m and ACE-PRT=3.74m. 

Furthermore, we assume that there is unlimited number of wait berths per station, in order 

to simplify other constraints and complexities which are not in the scope of work in this 

simulation. 

The free speed will be assigned according to the max velocity of the TPT. Because 

jam-density is determined according to observations, we use former observations and 

determine 𝑘𝑗 = 80
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝐾𝑀
.  

The vehicles capacity (10 / 20 passengers), velocity (~30KPH), and length (3.74 

meters) were chosen according to existing similar vehicles, such as the existing PRT 

vehicles. To analyze the vehicle capacity impact on the results, we have also examined 

vehicle capacity of 99 passengers, in order to represent a strictly non-binding capacity 

scenario. In addition, empty vehicle repositioning is set to be triggered  every 15 minutes. 

The demand data is described for each system in the following subsections. In cases 

of  heterogeneous demand ,when applying the approximate model, the demand matrices 

are modified such that for every origin station the total arrival rate is uniformly distributed 

over all destination stations, as follows: 
∑ 𝜆𝑖𝑗𝑗∈𝑆\{𝑖}

|𝑆|−1
  

Lastly, the abort model is configured so that every passenger that is not being served 

by an ACE-PRT for more than 60 minutes since the passenger arrival, will exit the system. 

When exiting the system, the passenger’s waiting time will not be considered in the 

system’s average waiting time calculation, and the 𝑁𝑎𝑏𝑜𝑟𝑡𝑠 parameter will be incremented 

by 1.  

 

 

5.1.1. Metronit – Red Line 

The first case study is a BRT service characterized by many stations and short distance 

between stations (Levinson et al. 2003). The “Metronit” is a BRT operating in Haifa, 

Israel, and serves 100,000 passengers riding the system per a day (Ynet, 2015) in five 

operating lines. For the most part, the BRT has a segregated and slightly elevated (7 CM) 
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path. The Metronit does not have the right of way when intersecting with regular roads. 

The Metroint drives according to a pre-determined line, and stops at each station, 

regardless if passengers would like to ascend/descend the bus. 

In the following simulation, the proposed model will be compared to the Metronit 

Red line consisting of 38 stations spread over 25 KM with an approximately 1-minute 

drive between station. The average rate of vehicle arrivals during peak hours in the Red 

line is between 4-8 minutes, and with an average velocity of 23 KM/H. As there is no 

real-life information about the demand matrix for this system, we assumed a uniform 

distribution of origin-demand matrix, so the estimated average arrival rate of passengers 

for each station is approximately 𝑑𝑖,𝑗 = 5 ∀𝑖 ≠ 𝑗 ∈ 𝑆. 

5.1.2. Tel Aviv Suburban Train 

The second case study is the Tel Aviv suburban train system characterized with large 

amount of demand, small amount of stations and long distances between station. The 

Israeli suburban train operating on an elevated railway allowing an undisturbed transit. 

The train’s intermediate coach are the Bombardier TWINDEXX Double-Deck Trains 

which each contain 121 passengers’ seats. The Israeli train has 2 locomotives in each 

train: Euro4000 of Stadler company with no passenger seats, and the Bombardier 

TWINDEXX Double-Deck driving coach – 70 seats. 

One train contains between approximately six intermediate coaches and two 

locomotives so in total the Israeli train may contain 790 passengers’ seats, in the length 

of 187 meters.  

We focus on the line segment from Rosh Haayin to Hagana station, Tel-Aviv. The 

line consists of 8 stations spread along 19.58 KM with varying travel times between the 

stations. The average rate of vehicle arrivals during peak hours is 15 minutes, and with 

an average velocity of 55 KM/H. According to the train capacity, the estimated average 

arrival rate of passengers for each station is approximately 𝑑𝑖,𝑗 =
790 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
=

56
𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

ℎ𝑜𝑢𝑟
 ∀𝑖 ≠ 𝑗 ∈ 𝑆.  

5.1.3. Berlin Metro Trams – M2 & M4 

The third and fourth case studies are two Berlin metro-trams characterized by medium 

number of stations and short distances between stations. Both metro-trams are using the 

Bombardier “Flexity” capable of carrying 240 passengers in the length of 40 meters. 200 
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million passengers use the 22 tram lines in berlin yearly and between 10,000 to 25,000 

passengers use the M-2, M-4 lines respectively (Peters, 2010). 

The M-2 line consist of 17 stations spread along for 6.84 KM, with an approximately 

1-minute drive between station and with an average velocity of 18.5 KM/h. The M-4 line 

consist of 25 stations spread along for 11.26 KM, with an approximately 1-minute drive 

between station and with an average velocity of 18.5 KM/h. According to the numbers of 

passengers per day, the estimated average arrival rate of passengers for each station is 

approximately for M-2:  𝑑𝑖,𝑗 = 15 ∀𝑖 ≠ 𝑗 ∈ 𝑆, and for M-4 will be: 𝑑𝑖,𝑗 = 7 ∀𝑖 ≠ 𝑗 ∈ 𝑆.  

5.1.4. Bucharest – M41 

The fifth case study is the Bucharest light-rail line characterized by medium number of 

stations and small distances between stations. The specific light-rail tram is using a 

segregated infrastructure to ensure fast travel times. The light-rail type is Bucur LF 

capable of carrying 240 passengers in the length of 40 meters. 

The M-41 line consists of 15 stations spread over 9.72 KM, with an approximately 1-

minute travel time between consecutive stations and with an average velocity of 19.5 

KM/H. The average demand for M-41 is estimated as:  𝑑𝑖,𝑗 = 20 ∀𝑖 ≠ 𝑗 ∈S, representing 

4200 
𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

ℎ𝑜𝑢𝑟
  during peak hours. 

5.1.5. Boston Blue & Orange Subway lines 

The sixth and seventh case studies are the Boston subway characterized by medium 

number of stations and varied distances between stations.  The blue line rolling stock is a 

Siemens 700-series, with a 15 meters car’s length, running on an infrastructure that 

consists of 12 stations spread along for 9.72 KM, with an approximately 2-minute drive 

between station and with an average velocity of 32.5 KMH. The average rate of vehicles 

arrivals is 4.5 minutes during peak hours. 

The Orange line rolling stock is a CRRC subway trains, with a 20-meter car length, 

running on an infrastructure that consists of 20 stations distributed over 17.93 KM, with 

approximately 2-minute travel time between consecutive stations and with an average 

velocity of 30 KM/h. For the two lines, official data for the passenger demand matrix 

between stations was used, provided by Massachusetts Bay Transportation Authority 

(MBTA, 2023). 
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5.2. Results 

For each case study we analyze the performance of the system for a range of fleet sizes. 

We present three main KPI’s: the mean wait to board, the percentage of aborting 

passengers and the mean trip occupancy. All of the results below describe feasible 

systems that ensure free flow of vehicles according to the Greenshields model. In 

particular, we have truncated the fleet ranges such that in none of the case studies and the 

considered fleet sizes, the system experienced over saturation. That is, the percentage of 

time in which the number of vehicles on a single segment (or more) exceeded the values 

prescribed by the Greenshiled model did no exceed 1%. 

5.2.1. Metronit – Red Line 

Figure 12 displays the mean wait time for a range of ACE-PRT fleet sizes (between 500 

and 900). The wait times for the simulation model, the simulation unlimited capacity case, 

and the approximate model are represented in blue, gray and orange, respectively. In 

addition, the average peak service wait time in the existing service is represented by the 

green horizontal line. As can be expected, as the fleet size increases the average wait time 

decreases. Notably, for the tested fleet sizes, the proposed ACE-PRT service cannot 

obtain mean wait times that are lower than in the existing service. This confirms the 

insight from Section 3, that is, the station-to-station direct service is not likely to 

outperform fixed service over lines that consist of many stations.  

Figure 13 displays the number of passengers served and the number of passengers 

who abort during a day. As can be observed, no passengers have aborted the system. That 

is, all passengers were served within an hour, but exhibited longer wait times on average, 

as compared to the current service. Lastly, Figure 14 displays the trip occupancy 

distribution. In particular, each curve represents the number of trips performed with a 

certain number of passengers on board (ranging from 1 to 10). Naturally, adding more 

vehicles to the system increases the number of low occupancy trips. In particular, with 

900 vehicles, most trips are performed with 2-3 passengers on board. 
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Figure 12 - Average Waiting Time for Metronit System 

 

 

Figure 13 - Number of Passenger Aborts for Metronit System 
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Figure 14 - Number of Passengers Per a Trip for Metronit System 

 

5.2.2. Israeli Suburban Train – Hod-Hasharon <> Hashalom Tel-Aviv 

Figures 15-17 display the mean wait time, the number of aborts and the trip occupancy 

distribution for Israeli Suburban Train case. By placing more than 90 vehicles the 

proposed service is capable of outperforming the existing service, in terms of the mean 

wait times. Furthermore, with more than 90 vehicles the capacitated case and the un-

capacitated cases converge, meaning that the 10 passenger capacity is not binding. A 

significant finding is that the approximated model, with more than 90 ACE-PRTs, is 

forecasting with a 99%+ accuracy the results of the ACE-PRT simulation model. 

According to Figure 16, no passengers are aborting the system when there are more than 

70 vehicles. Lastly, Figure 17 shows that when installing more than 150 vehicles, the 

average passenger occupancy per trip goes down 1-3 passengers per vehicle. 
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Figure 15 - Average Waiting Time for Israel Suburban Train System 

 

 

Figure 16 - Number of Passengers Aborts for Israel Suburban Train System 
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Figure 17 - Number of Passengers Per a Trip for Israel Suburban Train 
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Figure 18 - Average Waiting Time for Bucharest Light-Rail System 

 

 

Figure 19 - Number of Passengers Aborts for Bucharest Light-Rail System 
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Figure 20 - Number of Passengers Per a Trip for Bucharest Light-Rail 
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Figure 21 - Average Waiting Time for Berlin MetroTram M2 System 

 

 

Figure 22 - Number of Passengers Aborts for Berlin MetroTram M2 System 
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Figure 23 - Number of Passengers Per a Trip for Berlin MetroTram M2 System 

 

 

Figure 24 - Average Waiting Time for Berlin MetroTram M4 System 
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Figure 25 - Number of Passengers Aborts for Berlin MetroTram M4 System 

 

Figure 26 - Number of Passengers Per a Trip for Berlin MetroTram 4 System 
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Figure 27 - Average Waiting Time for Boston Blue Line System 

 

 

Figure 28 - Number of Passengers Aborts for Boston Blue Line System 
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Figure 29 - Number of Passengers Per a Trip Boston Blue Line System 

 

Figure 30 - Average Waiting Time for Boston Orange Line System 
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Figure 31 - Number of Passengers Aborts for Boston Orange Line System 

 

 

Figure 32 - Number of Passengers Per a Trip Boston Orange Line System 
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The lower the ration between the number of vehicles and number of stations, it becomes 

more important to apply an intelligent empty vehicle repositioning policy. To conclude, 

the queueing model approximation predicts very well the performance of the system with 

uncapacitated vehicles.  

To further enhance the approximate model, lower and upper bounds that are based on 

the capacity constraints and segment saturation constraints can be developed. Albeit, for 

finer results a simulation should be preferable. This bounds will be the feasible range of 

fleet sizes to operate without over-loading and over-saturating. 

The event-based simulation proved that the ACE-PRT model could provide better 

waiting times than the current services’ peak hours waiting time when the number of 

stations is not relatively high. The best improvement in waiting time is shown in the 

suburban train with an improvement of 75% in waiting time.  

The ACE-PRT model failed to outperform the current service in the Metronit, 

MetroTram line M4, and the Boston subway orange line cases, due to high number of 

stations leading to a high number of ACE-PRT vehicles and over-saturation. A possible 

good ridesharing policy might utilize the system and lower the number of ACE-PRT 

vehicles needed to satisfy the demand on those systems. When properly configured, the 

ACE-PRT approach was shown to be successful for all other case studies. 

 

 

6. Conclusion and Further Research: 

In this work, we examined the potential of transforming guideway based public transit to 

novel on-demand point-to-point services. The results show, that even with a simple 

vehicle routing policy that was analyzed in this research, it is possible to improve the 

level of service of passengers, particularly shortening waiting and journey time of 

passengers in certain use cases. 

Three main assumptions in the model leave further room for significant improvements 

if properly optimized. The first assumption is that all vehicles are serving immediately a 

passenger that is waiting in a station without considering the option of waiting to other 

passengers to arrive in the station. Therefore, it might be that passengers, with the same 

origin station and destination station, that enters their origin station in a short time 

window, but separately, won’t be served by the same vehicle. The second assumption is 

the direct station to station policy which fails in systems with large number of stations. In 

that case, it is possible to consider clustering neighboring stations together, which in turn 
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may reduce the complexity and the number of low occupancy trips. The last assumption 

is the use of a simple reallocation policy, that can and should be optimized according to 

real-time data and more precise prediction according to the former behavior of 

passengers. 

Lastly, the mathematical model is utterly important to quickly analyze the feasibility 

of the model, and deciding the proper number of vehicles that are needed to satisfy the 

demand. Having said that, the Israeli Queue Model is lacking the server capacity 

constraint and should be added as a further research. 
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 תקציר

צפויה לחולל  כן בחשמולורכב בין כלי קישוריות ב, ת של כלי רכבאוטונומיה בתנועה הטכנולוגיתההתקדמות 

תקל על שיתוף כלי רכב  זו. התקדמות שיתופיים גמישיםשירותי תחבורה  באמצעות עירוניתהמהפכה בניידות 

המונים הלמערכות הסעת  תושביםל הגדיל את הנגישות שתאפשר בקרת תנועה טובה יותר ותונסיעות, 

תשתית קיימת )רכבת  את הפוטנציאל של הפיכת תחבורה ציבורית מבוססת בוחניםקיימות. בעבודה זו אנו ה

לנקודה על פי דרישה. כדי להשיג זאת, -נקודהמ נסיעות לשירותי ( BRT-חשמליות ו קלה, רכבות אזוריות,

תשתיות רשת יקרות שאינן מנוצלות. אנו מזהים  ל גביע ,יםאוטונומי ,קטנים כלי רכב הסיעאנו מציעים ל

ם ומאפיינים סוגים של שירותי תחבורה ציבורית קיימים שעשויים להפיק תועלת משינוי כזה. אנו מפתחים כלי

יסייע בהגדרת המאפיינים של צי  מסוג זה , כליבפרט אופרטיבי.תמיכה בתכנון טקטי ו לטובת תומכי החלטה

 חוותהשתמש ויאפשר לקבוע את עומס הביקוש של הנוסעים שהשירותים המוצעים עשויים להרכב שבו יש ל

 .בשעות השיא

 ם ע"פ דרישהיהרכבים הקטנים האוטונומי לותיכדי לבחון את ההשפעה של השינוי המוצע, אנו מנתחים את פע

אותן על פני  ומשווים את ביצועיהם לשירותי התחבורה הציבורית המוצעים כיום תשתיות קיימות גביעל 

שירות המוצע של הקורב מ מודל. ראשית, אנו מפתחים מודלים. לשם כך אנו מפתחים שני סוגי תשתיות

 עתידיות . ייצוג כזה מאפשר הערכות ביצועים מהירות ומקל על השוואותה"תור הישראלי"על מודל  בהתבסס

 תיותר של המערכת באמצעות מודל סימולציה מבוססמדויק  מציעים ייצוג. שנית, אנו סובכיםוחים מונית

אירועים. מודל הסימולציה מאפשר בחינה מקיפה של היבטים שונים של פעולות המערכת ומאפשר ניתוח 

תוך הנוכחי ש יסודי יותר של הגדרות מערכת ספציפיות. תוצאות מחקר זה מוכיחות כי ניתן לספק את הביקו

בעזרת . יתר על כן, אותן בחנו בחלק ממערכות התחבורה הציבורית 50%-קיצור זמן ההמתנה של הנוסעים בכ

בשירות נסיעות אנו מצליחים למדוד בצורה מדויקת יותר את זמני ההמתנה של נוסעים תור הישראלי, מודל ה

 .בספרותאחרים הקיימים שיתופי, זאת בהשוואה למודלים מתמטיים 
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