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Abstract 

By analyzing a taxi rides dataset published by GAIA Initiative (DiDi’s open data 

project), which includes both ride orders and trajectory data, this work tries to gain 

insights regarding the specific road hierarchy characteristics of Chengdu city, as it 

emerges from two of DiDi's core ride services (DiDi Express and DiDi Premier). The 

work relies on previous research done using the mentioned dataset, and expands it using 

data from known open source projects, such as Open Street Maps (OSM) and 

innovative dynamic visualization tools, which were not previously applied on the 

researched dataset.   

Within its limitations, this work targets to achieve the following goals:  1) Understand 

the relationship between pick-up and drop-off locations and road hierarchy for intra-

city ride-sharing trips. 2) Leverage data behavior findings to provide policy 

recommendation about ride-sharing services.  As part of this work contribution, it first 

provides an algorithm to enrich pick-up and drop-off locations with their matching road 

type, in relation to the level of how major or minor it is in the city road hierarchy.   In 

the core of this work, we define three hypotheses related to the relationships between 

pick-ups and drop-offs distributions in relation to the city road hierarchy, and show a 

significant tendency towards major roads in pick-ups, and minor roads in drop-offs, as 

the main contribution. 

In addition, we choose to focus on shared rides as a strategic and emerging sub-group 

of this dataset, detect those using methods from previous research, and examine their 

specific behavior. Our results shows a significant change of the road hierarchy 

distribution between pick-ups and drop-offs of shared rides, although with trends which 

are yet to be determined. Finally, we analyze the unique temporal characteristics of 

rides in relation to the city road hierarchy, and the flow between different road types, 

in relation to rides departures and arrivals, revealing the relationship between intra-

higher road levels and intra-lower road level, among other insights. We conclude this 

work by standing on the importance of the city road hierarchy and characteristics when 

designing ride-sharing services policies, and especially modern policies such as corner-

to-corner and similar. 
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1. Introduction 

The cost of congestion in the United States alone is roughly $121 billion per year or 1% 

of GDP, which includes 5.5 billion hours of time lost to sitting in traffic and an extra 

2.9 billion gallons of fuel burned.  These estimates do not even consider the cost of 

other potential negative externalities such as the vehicular emissions, travel-time 

uncertainty, and a higher propensity for accidents. The large-scale adoption of smart 

phones and the decrease in cellular communication costs has led to the emergence of a 

new mode of urban mobility, namely mobility-on demand (MoD) systems, led by 

companies such as Uber, Lyft, and Via. These systems are able to provide users with a 

reliable mode of transportation that is catered to the individual and improves access to 

mobility to those who are unable to operate a personal vehicle, reducing the waiting 

times and stress associated with travel.  

An emerging sub-category of MoD services is ride-sharing. Ride-sharing services are 

transforming urban mobility by providing timely and convenient transportation to 

anybody, anywhere and anytime. These services present enormous potential for 

positive societal impacts with respect to pollution, energy consumption, congestion, 

etc. Dynamic ride-share systems aim to bring together travelers with similar itineraries 

and time schedules on short-notice. These systems may provide significant societal and 

environmental benefits by reducing the number of cars used for personal travel and 

improving the utilization of available seat capacity. Effective and efficient optimization 

technology that matches drivers and riders in real-time is one of the necessary 

components for a successful dynamic ride-share system. Advanced services, such as 

Via or MOIA, offers corner-to-corner service, which means passengers won’t get 

picked-up or dropped off at their exact location. Via, for example, reports that wait 

times for pick-ups are usually about 5 minutes, which is faster than the bus system. 

Depending on the user destination, he or she may need to walk that last block or two to 

reach their desired location.  

DiDi is a China-based MoD app from the company DiDi Chuxing. It is now a global 

service operator and competes with the likes of Uber – it is sometimes called as the 

Chinese Uber. It has a stake in Bolt in Europe, it purchased Uber China in 2016 and the 

Brazilian 99 more recently in 2019. DiDi has become the one-stop app to go to for 

hailing cabs or private cars, with 30 million trips completed on DiDi’s platform every 

day (more than 10 billion trips a year).  

One significant hub of the "Chinese Uber" operates in Chengdu city, the capital of 

Sichuan province, located in southwest China. It has an area of 14,300 square 

kilometers and has a population of approximately 16.3 million, while urban population 

is evaluated in 11.2 million, as of 2019. There are over 5 million cars in Chengdu, more 

than any other city in China except Beijing (2020). The city relies heavily on public 

transportation including mobility on-demand services, with DiDi being the most 

popular service for ride-sourcing and ride-sharing, with more than 8.5 million users. It 

recently has been studied that the percentage of shared trips in the city can potentially 

be increased from 7.8% to 90.7%, and the percentage of time savings can reach 25.7% 

from 2.4%. 
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By analyzing a dataset published by GAIA Initiative (DiDi’s open data project), which 

includes both orders and trajectory data, this work tries to gain insights regarding the 

specific road hierarchy characteristics of Chengdu city, as it emerges from two of DiDi's 

core ride services (DiDi Express and DiDi Premier). The work relies on previous 

research done using the mentioned dataset, and expands it using data from known open 

source projects, such as Open Street Maps (OSM) and innovative dynamic visualization 

tools, which were not previously applied on the researched dataset.   

Within its limitations, this work targets to achieve the following goals:  1) Understand 

the relationship between pick-up and drop-off locations and road hierarchy for intra-

city ride-sharing trips. 2) Leverage data behavior findings to provide policy 

recommendation about ride-sharing services. As part of this work contribution, it first 

provides an algorithm to enrich pick-up and drop-off locations with their matching road 

type, in relation to the level of how major or minor it is in the city road hierarchy.   In 

the core of this work, we define three hypotheses related to the relationships between 

pick-ups and drop-offs distributions in relation to the city road hierarchy, and show a 

significant tendency towards major roads in pick-ups, and minor roads in drop-offs, as 

the main contribution. 

In addition, we choose to focus on shared rides as a strategic and emerging sub-group 

of this dataset, detect those using methods from previous research, and examine their 

specific behavior. Our results shows a significant change of the road hierarchy 

distribution between pick-ups and drop-offs of shared rides, although with trends which 

are yet to be determined. Finally, we analyze the unique temporal characteristics of 

rides in relation to the city road hierarchy, and the flow between different road types, 

in relation to rides departures and arrivals, revealing the relationship between intra-

higher road levels and intra-lower road level, among other insights. We conclude this 

work by standing on the importance of the city road hierarchy and characteristics when 

designing ride-sharing services policies, and especially modern policies such as corner-

to-corner. 

The rest of this paper is organized as follows: Section 2 provides a literature review of 

previous research done using the DiDi dataset, of mobility on-demand services and its 

characteristics, and of other data-driven research done in relation to city road 

hierarchy.  Section 3 details the research goals of our work. The multi-step 

methodology process is presented in sec 4, which is followed by detailed presentation 

and analysis of the results section 5. The last section summarizes the contributions, 

limitations, and future research directions of the study. 

 

2. Literature review 

2.1 Data driven research related to DiDi Chuxing dataset 

In order to find potential gaps for research we started by reviewing the previous work 

done using the DiDi Chuxing taxi dataset, which was published in late 2017 [22]. While 

a lot of data driven research uses different ridesourcing datasets, including some in 

collected in Chinese cities - only a few use this specific dataset, collected in the city of 

Chengdu. While all works performed some kind of spatiotemporal analysis, some 

focused to leverage it for urban clustering methods, others for structuring potential 
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substitution for public transit, but the majority chose to focus on ridesharing. This can 

be related to the fact that the mentioned dataset includes a small portion of shared rides, 

but we can also assume it is related to the emerging interest and potential ridesharing, 

which grew significantly in recent years. This part will review the highlights found on 

the mentioned DiDi Chuxing dataset. 

 

Gao, Qingke, et al. (2019) [1] developed a clustering method to help discover the 

specific functions that exist within urban regions. This method applied the Gaussian 

Mixture Model (GMM) to classify regions’ inflow and trip count characteristics. It 

regroups these urban regions using the Pearson Correlation Coefficient (PCC) 

clustering method based on those typical characteristics. Using 1 week of the DiDi 

Dataset (approximately 1.5M data points) they demonstrate that the method can 

discriminate between urban functional regions, by comparing the proportion of surface 

objects within each region. There are some innovations that arose from this experiment. 

First, it found the series curves of inflow and trip count are a better means to represent 

the spatiotemporal patterns of residential travel than using pick-ups and drop-offs. 

Second, it shows that the method flow of GMM and PCC could identify different 

regions effectively. Finally, it claims that Points of Interest (POIs) could be taken into 

consideration when defining a region’s main function. 

 

A recent paper by Kong et al. (2020) [2] develops a three-level structure to recognize 

the potential substitution or complementary effects of ridesourcing on public transit. 

This paper investigates the effects through exploratory spatiotemporal data analysis. 

The results show that 33.1% of DiDi trips have the potential to substitute for public 

transit. The substitution rate is higher during the day (8:00–18:00), and the trend follows 

changes in public transit coverage. The substitution effect is more exhibited in the city 

center and the areas covered by the subway, while the complementary effect is more 

exhibited in suburban areas as public transit has poor coverage. Further examination of 

the factors impacting the relationship indicates that housing price is positively 

associated with the substitution rate, and distance to the nearest subway station has a 

negative association with it, while the effects of most built environment factors become 

insignificant. Based on these findings, policy implications are drawn regarding the 

partnership between transit agencies and ridesourcing companies, the spatial-

differentiated policies in the central and suburban areas. 

 

On a different focus, a paper by Tu, Meiting, et al. (2019) [3] aims to explore the 

potential of ridesplitting during peak hours, using a ridesplitting trip identification 

algorithm based on a share-ability network developed. It evaluated the gap between the 

potential and actual scales of ridesplitting. The results show that the percentage of 

potential cost savings can reach 18.47% with an average delay of 4.76 min, whereas 

the actual percentage is 1.22% with an average delay of 9.86 min. The percentage of 

shared trips can be increased from 7.85% to 90.69%, and the percentage of time savings 

can reach 25.75% from 2.38%. This is the first investigation of the gap between the 

actual scale and the potential of ridesplitting on a city scale. The proposed ridesplitting 

algorithm also take passenger delays into consideration. Further this research argues 

that the quantitative benefits could encourage transportation management agencies and 
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transportation network companies to develop sensible policies to improve the existing 

ridesplitting services. 

 

In their work, Li, Wenxiang, et al. (2019) [4] further aims to explore the characteristics 

and effects of ridesplitting using observed ridesourcing data provided by DiDi dataset. 

First, a ridesplitting trip identification (RTI) algorithm is developed to separate the 

shared rides from the single rides (non-ridesplitting orders) and understand the 

ridesplitting share from total rides and their durations. Second, a ridesplitting trajectory 

reconstruction (RTR) algorithm is proposed to estimate the ridesplitting effects on 

delays and detours. Furthermore, the article analyzes and compares the scales, 

spatiotemporal patterns and travel characteristics between shared rides and single rides. 

The results show that the current percentage of ridesplitting in ridesourcing is still low 

(6-7%), which may be explained by the extra delay (about 10 min on average), detour 

(about 1.55 km on average), and degraded travel time reliability caused by ridesplitting. 

In addition, built environment factors, such as density and development, are positively 

correlated with ridesplitting demand and delay, while the diversity factor (mixed land-

use) is negatively correlated with both. The findings of this study help better understand 

the features of ridesplitting and develop strategies for improving its use in emerging 

ridesourcing services. Our work will rely on the mentioned RTI algorithm and further 

develop the characteristics between shared and single rides.  

2.2 Data driven research related to city road type characteristics  

In a study done by Zhang, Yingjia, et al. (2015) [12] the researchers used data obtained 

from 340 cities based on the Chinese OSM road network to explore OSM road 

geometry (road density) and road attributes (road type) and their relationship. In this 

paper, the Shannon–Wiener index was used to evaluate the diversity of road types, for 

which a total of 340 city units were included. This metric classified Chengdu city, as a 

provincial capital, as a first grade road type diversity, which strength the potential of 

our own work on Chengdu city, using OSM diverse road types. In the rest of this work 

we refer to road type mainly as road level. 

A significant work that we draw inspiration from is a publication by Ravi Shenkar [5], 

which used a high-scale (1.3 billion records) NYC GPS originated taxi dataset, ranging 

from 2009 to 2016.  He produced some interesting visualizations of pickup and drop-

off locations. Within his major insights, he compared the pickups and drop-offs on a 

point by point basis, showing how the avenues in Manhattan have more taxi pickups 

than the cross streets, which have more drop-offs. 

2.3 Mobility on Demand (MoD) and ride-sharing services 

In the following part we will review the characteristics, terminology and importance of 

Mobility on Demand services, focusing on ride-sharing. 

The cost of congestion in the United States alone is roughly $121 billion per year or 1% 

of GDP [7], which includes 5.5 billion hours of time lost to sitting in traffic and an extra 

2.9 billion gallons of fuel burned.  These estimates do not even consider the cost of 

other potential negative externalities such as the vehicular emissions [8], travel-time 

uncertainty [9], and a higher propensity for accidents [10]. The large-scale adoption of 
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smart phones and the decrease in cellular communication costs has led to the emergence 

of a new mode of urban mobility, namely mobility-on demand (MoD) systems, led by 

companies such as Uber, Lyft, and Via. These systems are able to provide users with a 

reliable mode of transportation that is catered to the individual and improves access to 

mobility to those who are unable to operate a personal vehicle, reducing the waiting 

times and stress associated with travel. One of the major inefficiencies of current MoD 

systems is their capacity limitation, typically restricted to two passengers. A recent 

study in New York City showed that up to 80% of the taxi trips in Manhattan could be 

shared by two riders, with an increase in the travel time of a few minutes. 

In a previous review performed by Alonso-Mora, Javier, et al. (2016) [6], the 

importance of MoD is being presented. Ride-sharing services are transforming urban 

mobility by providing timely and convenient transportation to anybody, anywhere and 

anytime. These services present enormous potential for positive societal impacts with 

respect to pollution, energy consumption, congestion, etc. Dynamic ride-share systems 

aim to bring together travelers with similar itineraries and time schedules on short-

notice. These systems may provide significant societal and environmental benefits by 

reducing the number of cars used for personal travel and improving the utilization of 

available seat capacity. Effective and efficient optimization technology that matches 

drivers and riders in real-time is one of the necessary components for a successful 

dynamic ride-share system. 

Ride-sharing services can provide not only a very personalized mobility experience but 

also ensure efficiency and sustainability via large-scale ride pooling. Large-scale ride-

sharing requires mathematical models and algorithms that can match large groups of 

riders to a fleet of shared vehicles in real time. The mentioned work results [6] showed 

significant results from a study performed in NYC (2,000 vehicles, which are 15% of 

the taxi fleet, of capacity 10 or 3,000 of capacity 4 can serve 98% of the demand within 

a mean waiting time of 2.8 min and mean trip delay of 3.5 min). 

 

A study obtained from DiDi services as well [11], analyzed the environmental impacts 

of the increasingly popular ridesharing travel, by taking Beijing as the empirical 

context. In the mentioned study by Yu, Biying, et al. several findings are obtained, 

which can fill an important gap in the understanding of this emerging travel mode in 

megacities: 1) ridesharing is able to reduce energy consumption, CO2 emissions, and 

NOx emissions by 26.6 thousand tce, 46.2 thousand tons, and 235.7 tons, As for the 

indirect impacts related to industrial production due to users’ potential attitude change 

towards purchasing new cars or replacing the old cars, substantial energy savings and 

emission reduction. 2) Ridesharing trips show very obvious regional and temporal 

characteristics, and are mainly contributed to undertake commuting trips. 3) 

Ridesharing service mainly help meet the demand for the mid- and long-length trips in 

Beijing, since the average service distance of ridesharing trips is about 17.7 km with 

more than 70% of trips is longer than 10 km. 4) Ridesharing has evident influence on 

passengers’ current travel model choice and their future attitudes towards purchasing 

new vehicles or replacing the old vehicles. 
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2.4 Ride-sourcing Vs Ride-splitting services 

There are some controversies and confusion concerning the differences between these 

on-demand ride services and ridesharing services. Ridesharing indicates that drivers are 

travelers who share similar origins/destinations with their riders for a common purpose 

of conserving resources, saving money, or saving time. On the other hand, ridesourcing 

is a for-hire commercial service that operates similarly to taxi services. There are many 

ridesourcing companies around the world, including Uber, Lyft, Grab, Ola and DiDi 

Chuxing. As of 2020, Uber was operating in 69 countries in over 900 metropolitan 

areas, with approximately 5 million drivers [24], while Lyft was operating in 644 cities 

in the US, with over 2 million drivers (2019) [25]. In the past nearly six years, DiDi 

Chuxing has served more than 450 million users with a full range of mobility services 

across 400 cities in China, including Taxi, Express, Premier, Hitch, Bus, Minibus, 

Designated Driving, Car Rental and Enterprise Solutions. Most ridesourcing companies 

have launched services that enable riders to share the ride and split the cost with other 

people taking a similar route. These relatively new services are called ridesplitting, “a 

form of ridesourcing where riders with similar origins and destinations are matched to 

the same ridesourcing driver and vehicle in real time” (Shaheen et al., 2016). Early 

examples of ridesplitting are Lyft Line and UberPool, which allow unrelated passengers 

with overlapping routes to split rides and fares (Shaheen et al., 2015). Riders pay about 

half the normal price in exchange for sharing the car with other riders and accepting a 

detour of a few minutes to pick up and drop off a second passenger or group of 

passengers (Sperling, 2018).  

2.5 Corner-to-corner ride-sharing services 

A few services emerged recently offer a distinction from other known services. Via 

operates similarly to Uber and Lyft, but with a few distinctive differences. The most 

obvious distinction is that it is set up as an actual ride-sharing service. Passengers, in 

most cases, will get in a car with strangers who are heading in the same direction as 

them. It offers corner-to-corner service, so they won’t get dropped off at their exact 

location. Via also says wait times are usually about 5 minutes, which is faster than the 

bus system. Depending on your destination, you may need to walk that last block or 

two to reach your desired location [26]. MOIA, a service provided by Volkswagen 

mobility group which operates in 2 cities in Germany, provides corner-to-corner service 

as well, which in that case means that pick-up and drop-off are up to 250 meters far 

from the addresses specified by the user [27]. Gilibert, Mireia, et al published a recent 

case study using data collected from MOIA activity in Hanover [28]. 

As mentioned at the head of this review, while all previous work on the DiDi dataset 

performed some kind of spatiotemporal analysis, some focused to leverage it for 

urban clustering methods, others for structuring potential substitution for public 

transit, but the majority chose to focus on ridesharing. Out of the few on this sub-

category, while some analyzed some of urban characteristics of Chengdu city, none of 

them noticed a significant characteristic, which is the hierarchy of the city road levels 

– a key aspect while designing advanced ridesharing driving policies, such as corner-

to-corner and similar. By acknowledging the importance of this feature, and by 

combining graphical and statistical tools we try to define two research goals. 
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3. Research goals 

  Following the above we define the targets we aim to achieve in this work:    

1 Understand taxi intra city trips pick-ups and drop-offs points' behavior with 

relations to road hierarchy and ride-sharing. 

2 Leverage data behavior findings to provide policy recommendation about ride-

sharing services. 

 

4. Methodology 
 

4.1 Case study - Chengdu city 

The study area for this research locates is the Chinese city of Chengdu. As the capital 

of Sichuan province, Chengdu is located in southwest China. It has an area of 14,300 

square kilometers and has a population of approximately 16.3 million, while urban 

population is evaluated in 11.2 million, as of 2019. In addition, Chengdu contains many 

ethnic groups and has residents from 55 ethnic minority groups. It comprises 11 

administrative districts, 5 county-level cities and 5 counties. Chengdu is a commercial 

logistics center and a comprehensive transportation hub. Its gross domestic product 

(GDP) exceeded 1.7 billion yuan in 2020. There are over 5 million cars in Chengdu, 

more than any other city in China except Beijing (2020). Because citizens mainly travel 

within the Fourth Ring Road area in Chengdu, we selected the radius of 10K from city 

center as the study area for this research. 

Figure 1: City center of Chengu city 
http://www.chinatraveldiscovery.com/china-map/chengdu-map.htm 
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4.2 Data description 

The data used in this study are from the DiDi GAIA Initiative [22], DiDi’s open data 

project (DiDi Chuxing, 2017). The project shares the complete ride trajectory and order 

data of DiDi Express and DiDi Premier, two of DiDi Chuxing’s core ridesourcing 

services, in the city of Chengdu, China, from November 1-30, 2016. The trajectory 

dataset contains fields such as anonymous driver ID, order ID, timestamp, longitude, 

and latitude, with an average sampling interval of 3 seconds (some sample data are 

shown in Table 1). The order dataset includes fields such as order ID, start and end 

timestamps, pick-up and drop-off locations (some sample data are shown in Table 2). 

Taking into considerations of its time range, area coverage and size, which contains 

7,065,907 records, we can assume this dataset constitutes a significant sample of the 

population from throughout Chengdu (yet not necessarily a representative one). 

Table 1: Trajectory sample data, DiDi Chuxing dataset 

 

 

Table 2: Orders sample data, DiDi Chuxing dataset. Fields marked in [*] were extracted during pre-processing on 
top of original data fields 

 

 

 

 

 

 

Field Type Sample Comment 

DriverID String glox.jrrlltBMvCh8nxqktdr2dtopmlH Anonymized 

OrderID String jkkt8kxniovIFuns9qrrlvst@iqnpkwz Anonymized 

Timestamp String 1,501,584,540 Unix Timestamp, in seconds 

Longitude String 104.04392 GCJ-02 Coordinate System 

Latitude String 104.04392 GCJ-02 Coordinate System 

Field Type Sample Comment 

OrderID String mjiwdgkqmonDFvCk3ntBpron5mwfrqvI Anonymized 

Ride_Start_Timestamp String 1,501,581,031 Unix Timestamp (seconds) 

Ride_End_Timestamp String 1,501,582,195 Unix Timestamp (seconds) 

Pick-up_Longitude String 104.11225 GCJ-02 Coordinate System 

Pick-up_Latitude String 30.66703 GCJ-02 Coordinate System 

Drop-off_Longitude String 104.07403 GCJ-02 Coordinate System 

Drop-off_Latitude String 30.6863 GCJ-02 Coordinate System 

Day_of_week* Integer 4 [0,1,2..6] Range, Shifted 6AM-6AM 

Pick-up_hour* Integer 13 [0,1,2..23] Range 

Drop-off_hour* Integer 14 [0,1,2..23] Range 

Duration* Integer 35 In minutes 

Air_Distance* Float 3.54 KM, Euclidean distance 



13 
 

4.3 Data preparation  

4.3.1 Data filtering 

A total share of 13.6% filtered records were filtered out from original order dataset due 

to duplicate rides (identical order id, start time, end time, pick-up and drop-off 

coordinates). The remaining dataset size is 6,105,003 records (86.4% of original data). 

4.3.2 GCJ-02 coordinate system and data offset 

The GCJ-02 coordinate system is a geodetic datum formulated by the Chinese State 

Bureau of Surveying and Mapping, and based on WGS-84. It uses an obfuscation 

algorithm, which adds apparently random offsets to both the latitude and longitude, 

with the alleged goal of improving national security. There is a license fee associated 

with using this mandatory algorithm in China. A marker with GCJ-02 coordinates will 

be displayed at the correct location on a GCJ-02 map. However, the offsets can result 

in a 100 - 700 meter error from the actual location if a WGS-84 marker (such as a GPS 

location) is placed on a GCJ-02 map, or vice versa. [13] 

4.3.3 Reverse transformation 

GCJ-02 appears to use multiple high-frequency noises, effectively generating a 

transcendental equation and thus eliminating analytical solutions. However, the open-

source "reverse" transformations [14] make use of the properties of GCJ-02 that the 

transformed coordinates are not too far from WGS-84 and are mostly monotonic related 

to corresponding WGS-84 coordinates. The rough method is reported to give some 1~2 

meter accuracy for wgs2gcj. [13] 

4.3.4 Shared rides extraction 

4.3.4.1 DiDi ExpressPool  

As mentioned above, the dataset is originated in 2 of DiDi's services: Express and 

Premier. DiDi express offers the option for a passenger to choose whether to share a 

ride with other passengers when s/he requests the ride. If the passenger chooses the 

ridesplitting option (also called ExpressPool), he will receive a discount of up to 40% 

on the price based on the likelihood of matching with another rider, regardless of 

whether the trips are successfully matched eventually. The payments to ridesplitting 

drivers are mostly based on the actual travel time and distance of the trip, with some 

additional rewards. By April 2018, the daily number of rides on DiDi ExpressPool 

surpassed 2.4 million in 60 cities (compared with the 25 million daily orders on all its 

services), which makes DiDi ExpressPool the main ridesplitting service in China. DiDi 

Premier, the second type of services we can find in the dataset, is considered to deliver 

a high-end, luxury rides with specially trained drivers. 

4.3.4.2 Ridesplitting Trip Identification (RTI) 

In order to explore the relation of ridesplitting to our research questions we would first 

need to detect the ridesplitting rides from the raw dataset. This would allow us to ask 

questions regarding shared rides versus single rides, as previously done on Li, 

Wenxiang, et al. [4]. For the full methodology, notations and pseudo-code we can refer 

to the sec 4.1, 4.2 in the original article [4], but we will mention the main definitions: 
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 Single ride: from a rider's perspective, the rider travels and bears the ride cost 

alone.  

 Shared ride: from a rider's perspective, the rider shares the ride and splits the 

cost with other riders taking a similar route, as arranged by the application in 

real-time. 

 Ridesplitting trip: from a driver's perspective, the driver receives multiple ride 

requests on a trip for which riders have similar origins or destinations; a 

ridesplitting trip consists of two or more shared rides starting from the time 

when the driver picks up the first customer to the time when the driver drops off 

the last customer (i.e. the vehicle becomes vacant again) 

Our results after applying the RTI was almost identical to the original researchers' 

results, detecting 375,632 out of 375,661 original results (99.99%). Distribution of 

remaining shared ride characteristics were almost identical as well. Each shared ride 

detected was labeled as 'Shared' while others were labeled as 'Single'. 

4.3.5 Open Street Maps 

The OpenStreetMap (OSM) project is perhaps one of the most successful examples of 

crowdsourcing in the spatial domain. Streets comprise the single most important feature 

in the OSM database. Street network information is fundamental for many applications 

such as navigation, network analysis, and map generalization, just to name a few. The 

basic semantic information of a street is its class such as a motorway, a primary road, 

or a residential road, etc. This information indicates several things about a street: its 

possible neighborhoods, its permissible driving speeds, and the level of map 

generalization at which it should be displayed.  

As shown in Table 3, the road network dataset was extracted using the osmnx library 

[17], which lists ~31K edges, after bounding the requested radius in 10K from city 

center and filtering only driving network. A complete data description is detailed in 

table 3. The driving network in the city of Chengdu includes 8 road levels ranging from 

highest (Motorway) to lowest (Living Street), and does not include paths, street and 

special roads which are not accessible for driving, such as service roads, pedestrian and 

others. For the purpose of binary classification, in some parts of the rest of this paper 

we will refer to the highest five types (Motorway to Tertiary) as "major roads" and the 

lower three (Unclassified to Living Street) as "minor roads".  A detailed list of the 

driving road list can be found in table 4. 
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Table 3: Road network data of OSM 

Field  Type Sample Comment 

osmid  Int 99989683 Unique network edge ID 

u  Int 359203175 OSM "From" node ID 

v  Int 359203168 OSM "To" node ID 

name  String Shawan Road Name of the road 

geometry 

 

String 

LINESTRING (-21.93067 

64.05665, -21.93067 64.0..) 

(u,v) Location Info 

(GPS) 

oneway  Binary FALSE Is this road one way 

lanes  Integer 2 Number of lanes 

highway  String Primary Road hierarchy level 

length  Float 237.337 Total length (KM) 

maxspeed  Integer 70 Max speed allowed 

 

Table 4: Road hierarchy levels of OSM [15] 

Road level Description 

Motorway A restricted access major divided highway, normally with 2 or more 

running lanes plus emergency hard shoulder. Equivalent to the 

Freeway, Autobahn, etc. 

Trunk High performance or high importance roads that don't meet the 

requirement for motorway 

Primary A major highway linking large towns, in developed countries 

normally with 2 lanes. In areas with worse infrastructure road quality 

may be far worse. The traffic for both directions is usually not 

separated by a central barrier. 

Secondary A highway which is not part of a major route, but nevertheless forming 

a link in the national route network. In developed countries it normally 

has 2 lanes and the traffic for both directions is usually separated by a 

central line on the road.  

Tertiary Within larger urban settlements such as large towns or cities, tertiary 

roads link local centers of activity such as shops, schools, or suburbs. 

Low to moderate traffic. 

Unclassified Minor public roads typically at the lowest level of the interconnecting 

grid network. Used for roads used for local traffic, and for roads used 

to connect other towns, villages or hamlets. 

Residential roads that are used for accessing residential areas and in residential 

areas but which are not normally used as through routes 

Living 

Street 

A street where pedestrians have priority over cars, children can play 

on the street, maximum speed is low. 

 

4.3.5.1 OSM data pre-processing 

 

It was found that 204 out of 31K (0.6%) edges detected within the research area of 

Chengdu with no distinct "highway" label. Some examples can be found such as 

['living_street', 'tertiary', 'residential'], ['motorway', 'trunk'] or just 'road'. These edges 

length are accounted for 1.5% of total research area road length and ~1% of rides were 

matched to these roads as nearest. Since there is no method of knowing the actual sub-
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roads for these edges and their hierarchy level, two method were applied to handle these 

anomalies: 1) Split their length equally for each label in the list of multiple labels. 2) 

For all rides matched with a multi-list choose randomly (uniform distribution) a label 

from each multi-list and assign this label to the ride. This methods aim to minimize the 

error caused by the ambiguity of the indistinct labels. Based on this, and the relatively 

low share of these anomalies the integrity of the data should remain. Complete 

distribution of city road levels length following these steps can be shown in figure 2.   

 

  

4.4 Exploratory data analysis using dynamic visualization 

First, we would like to get a better understanding of our data and explore it. As 

mentioned in our literature review, the DiDi rides dataset was researched before by a 

few studies, and provided exploratory analysis on the original dataset. Statistical 

insights such as trajectory and order data feature analysis were provided by Li, 

Wenxiang, et al. [4], which also explored the characteristics of shared rides detected. A 

graphical representation of the pickups and drop-offs was created by Kong et al. [2], 

but none created a rich and dynamic visualization as the one we present on this dataset, 

at least for our knowledge. 

4.4.1 Spatial analysis of DiDi pick-ups and drop-offs 

We begin by plotting a pick-ups and drop-offs of 5.2 million rides in our filtered 

research area radius. Since the human eyes are incapable of absorbing this amount of 

information in a simple plot, we leverage the datashader [18] library. Each pixel on the 

display corresponds to certain histogram boundaries in the data. The library counts the 

number of data points that fall within those boundaries for each pixel, and this number 

is used to color the intensity of the pixel. From the results comparing pick-ups and drop-

offs (Figure 3) we can spot a higher intensity around major roads in pick-ups, a pattern 

that emphasizes the city center road outline. In contrary, drop-offs plot seems to 

Figure 2: Road level Length (KM) distribution in Chengdu city, 10KM radios from city center 
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portraits a more uniform distribution between major and minor roads, possibly more 

common in residential areas than pick-ups.   

 

 

4.4.2 Spatiotemporal analysis 

We continue by using different dimensions in the data. In this example, we would like 

to see if certain areas (or roads) are more likely to have pickups at certain hours, a 

pattern that may origin from natural different urban characteristics of a large city areas, 

such as night-life areas, residential neighborhoods, business centers or industrial areas. 

The results, as shown in figure 4, seems to correlate with previous temporal analysis 

done by Li, Wenxiang, et al [4], as the colors from cyan (12pm), blue (4pm) to purple 

(8pm) indicates the peak hours off pick-ups. An additional layer unravels when noticing 

the different colors in the road structure, as more blue shades cover more major roads, 

what may suggest a later peak in departures from major roads. As for drop-offs, a 

clearer view is presented, when purple color dominates most of the city structure, 

suggesting the even later peak (8pm) in most arrivals around the city outer rings. While 

cyan and green colors (8am-12pm) show up in specific spots in the inner city center, 

which correlates with the departures morning peak hours.  

   

 

 

Figure  3 : Pick-ups (left) and drop-offs (right) distribution of DiDi rides in Chengdu city. Color intensity represents the scale of total 
rides around the location.  
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4.4.3 Pick-ups Vs drop-offs trend analysis  

To gain additional clear insights regarding urban characteristics of the rides, we plot 

the pick-ups simultaneously with drop-offs. This results in the following: Roads with 

more pickups than drop-offs will appear in red scale, while others with more pick-ups 

will appear in a blue scale. By reviewing figure 5 it is clear that pickups are more 

common on major roads, as and drop-offs are more common on minor streets, possibly 

residential. This trend seems even clearer if we examine the most inner ring around the 

city center.   

Figure 4: Spatiotemporal representation of DiDi rides pick-ups (left) and drop-offs (right). Since hours and colors are both cyclic, in 
these visualizations the order of colors is roughly red (midnight), yellow (4am), green (8am), cyan (noon), blue (4pm), purple (8pm), 
and back to red. 



19 
 

 

 

4.5 Hypotheses definition 

 

There is no doubt that many questions arise from these plots, that many of them will 

require to dig deeper into temporal dimensions (weekdays and hours) and spatial or 

urban characteristics (points of interest and land-use information). Since our work 

is limited we chose to focus on the road hierarchy and its behavior that arise from 

the DiDi data, and other complementary datasets. We define in a more accurately 

three research questions that we will try to answer following the visual pick-

ups/drop offs behavior within city center: 

1. Is there a statistical significant change between road length distribution and 

pick-ups/drop-offs distributions, in relation to road hierarchy distributions? 

2. Is there a statistical significant change between pick-ups and drop-offs, in 

relation to road hierarchy distributions? 

3. Is there a statistical significant change between single and shared rides, in 

relation to road hierarchy distributions, regarding shared rides only? In pick-ups 

and/or drop-offs. 

Figure  5 : Pick-ups Vs drop-offs merged ditributions in Chengdu City. Roads with more pick-ups than drop-offs will be 
colored in red scale, while roads with more drop-offs will be colored in blue scale. 



20 
 

4.6 Road to rides pick-ups/drop-offs matching 

Since the available dataset does not provide the road information we need we first 

develop an algorithm (figure 6) to detect the nearest road to each pick-up/drop-off point, 

and then extract it's meta-data we need (e.g road level, road length, distance from point). 

For optimization reasons, around each point we'll create a small radius to select the 

closest roads to it as candidate roads, and extract the closest of them to the point. In 

case no roads found in the selected radius, the radios will double its size, until reaching 

a maximum of 1k, since a minority of the OSM graph edges are defined by relatively 

distant nodes from each other. Since time complexity per location is still relatively high 

we choose to apply the algorithm on 1 week of data only (1.14M records, 18.7% of 

total), using the dask python library for CPU parallelization [16].  

 

 

In order to verify the integrity of our results we extracted the distribution of the 

distances between our inputs (coordinate points) and outputs (closest roads). The results 

show the median distance stands on 6m, with a maximum of 210m, which are 

reasonable based on GPS accuracy. Full distribution is detailed in table 5.  

 

Table 5: Distance distributions of pick-up point to nearest road, as found by the 'road to point' matching algorithm 

 

 

 

 

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90% max 

Distance from nearest road (m) 0.9 1.9 3.1 4.6 6.3 9.4 15 26.3 51.5 210 

get_closest_road (latitude, longitude, osm_graph): 

1. Create a graph from driving roads network within 10KM radius from city center 

2. For each p in coordinate points [pickups U drop-offs]: 

a. r = 50m // initializing minimal radios around point 

b. While r <= 1k: 

i. p_bbox = Truncate bounding box around point p in radius r 

ii. roads = all roads found within cp_bbox 

iii. if roads not empty: 

1. for road in roads: 

a. distances[road] = point_to_line(p, road) [23] 

2. closest_road = argmin(distances) // find road with minimum distance 

3. return closet road details (highway_type, distance from p) 

iv. r = r*2 // expand search parameter around point 

Figure 6: Pseudo-code of road to point matching algorithm 
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4.7 City road hierarchy outline 

We continue to explore the characteristics of the city road hierarchy and by utilizing 

the full diversity of Chengdu city. In figure 7 we plot the rides pick-ups and drop-offs, 

while coloring the different road levels discovered by the road matching methodology 

we implemented.  The plot gives an interesting and colorful overview of the urban 

characteristics of the city, revealing the surprising density of residential roads (white) 

and the relations between primary (red), secondary (purple) and tertiary (orange) roads, 

covering the rings of city center and the major roads. This suggest two conclusions: 1) 

Most road levels are distributed all around the city center, so any future ride policy that 

may be suggested is not likely to ignore any part of the city. 2) Current DiDi driving 

policy is not ignoring any road level, as we can see all 8 colors, representing even the 

most major road (motorway; yellow) all the way down to the lowest level (living street; 

blue). Saying that, it seems that the coverage of these road levels, at least based on pick-

ups and drop-offs, is very low. In the next section we will explore how low or high is 

the coverage of different levels, in a more normalized method.   

    

 

 

 

 

 

 

 

Figure 7: Chengdu city road hirarchy outline, as emerging from DiDi rides pick-ups (left) and drop-offs (right). 

Color legend: Motorway – yellow; Trunk – Pink; Primary – Red; Secondary – Purple; 
Tertiary – Orange; Unclassified – Grey; Residential – While; Living Street - Blue 
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5 Results 

 
5.1 Statistical analysis of rides behavior 

After summarizing our results (see table 6) we'll try to test our hypothesis in statistical 

methods, which will back-up our visual insights. For each hypothesis, we'll start by 

analyzing the gaps between distributions, and later test our hypothesis using Pearson 

Chi-squared test for categorical data. 

 

 

 Road length vs all pick-ups: When comparing the road length distribution to 

entire rides pick-ups distribution we notice the following:  

 City length distribution: Residential roads account for most of road 

length (28.9%) followed by tertiary (25.4%) and Secondary (13.2%) 

 Major roads: Primary/Secondary/Tertiary share is larger than their 

relative city length share (68.5% vs 49.4%) 

 Minor roads: Unclassified/Residential/Living street share is smaller than 

their relative city length share (28.9% vs 41.3%) 

 Chi-Squared test: We reject the Null hypothesis with p-value 

approaching 0, meaning the distributions are independent and different 

by any confidence level.  

 Pick-ups Vs drop-offs: when comparing the pick-ups distribution vs drop-offs 

distribution we also learn that:  

 Pick-ups are more popular in tertiary (+2.6% than drop-offs) and 

secondary (+1.4%) roads, which are major, and less popular in 

Residential (-2.3%) and unclassified (-0.9%) roads, which are minor.  

 Chi-Squared test: We reject the Null hypothesis with p-value 

approaching 0, meaning the distributions are independent and different 

by any confidence level.  

 Shared Vs single rides: when comparing shared rides vs single the trend is 

somewhat mixed:  

Road Level

Total Length 

(KM)

Share of 

Total Length

Level Share - 

All rides

Level share -  

 Single Rides

Level share -  

 Shared Rides

Level Share - 

All rides

Level share -  

 Single Rides

Level share -  

 Shared Rides

motorway 139.7 2.4% 0.17% 0.17% 0.21% 0.44% 0.45% 0.38%

trunk 397.3 6.9% 2.20% 2.20% 2.14% 2.43% 2.45% 2.24%

primary 629.3 10.9% 24.22% 24.10% 25.93% 24.28% 24.37% 23.03%

secondary 761.7 13.2% 17.18% 17.15% 17.59% 15.71% 15.72% 15.52%

tertiary 1466.6 25.4% 27.20% 27.27% 26.20% 24.69% 24.61% 25.78%

unclassified 613.3 10.6% 8.57% 8.56% 8.72% 9.41% 9.45% 8.93%

residential 1673.3 28.9% 19.59% 19.67% 18.38% 21.86% 21.78% 23.00%

living street 103.6 1.8% 0.88% 0.88% 0.82% 1.16% 1.17% 1.12%

Drop-offsRoad Length Pickups

Table 6: Chengdu road level distribution by city length (left), DiDi rides pick-ups (middle) and drop-offs (right). 
Depatures and arrivals distributions are also split to single and shared rides, as extracted in sec 6.1. Each column 
represent a different distribution. Road levels are ordered descending from most major to most minor. 
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Figure 8: Hourly distributions of Chengdu road level across rides in weekdays: pick-ups (upper-left), and drop-offs (upper 
right), and in weekends: pick-ups (lower-left) and drop-offs (lower-right). Each road level is normalized by its maximum 
value. 

 Shared pick-ups are more popular in primary (+1.9% than single pick-

ups) and secondary (+0.5%) roads, which are major, but are less popular 

in tertiary (-1%), which is also major and in residential (-1.3%) which is 

minor.  

 Chi-Squared test (pick-ups): We reject the Null hypothesis with p-value 

approaching 0, meaning the distributions are independent and different 

by any confidence level.  

 Shared drop-offs are more popular in tertiary (+1.1% than single drop-

offs) and residential (+1.2%) roads, but are less popular in primary (-

1.3%), which and in unclassified (-1.3%) which is minor.  

 Chi-Squared test (drop-offs): We reject the Null hypothesis with p-value 

approaching 0, meaning the distributions are independent and different 

by any confidence level. 

 

5.2  Temporal analysis of rides road hierarchy behavior 

We continue to explore trends in a temporal dimension. To understand the popularity 

of departure and arriving in different road levels we split the data to weekdays (Mon-

Fri) Vs weekends (Sat-Sun), plotting an hourly heat-maps for pick-ups and for drop-

offs (figure 8). Taking into consideration the different scale ranges between each level, 

we normalize each level to its maximum value, so each row in a given heat-map stands 

on its own.  
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From this plot we summarize a few insights regarding the more significant levels we 

focused so far:  

 Overall behavior off week-days vs weekends doesn't show any dramatic 

change, emphasizing the high mobility of the population thought the 

entire week and the necessity of mobility solutions. 

 Pick-ups from primary roads peaks in late evening, while drop-offs 

peaks at early morning. During weekends drop-offs early peak lasts until 

afternoon. (probably related to business areas)  

 Pick-ups from residential roads peaks in morning, while drop-offs peaks 

at night. During weekends drop-offs late peak lasts up to 2AM (probably 

related to night-life habits). 

 Temporal behavior of rides from/to tertiary roads tend to be more similar 

to residential roads, which is interesting, as tertiary relates to more major 

roads. According to this, it would be interesting for future research to 

explore the land-use and points of interest around primary vs tertiary 

roads, which behave in contrary to one another. 

 

5.3 . Visual analysis of rides roads origins to destinations flow 

As a sub-task for our goal to understand the rides behavior in relation to the city road 

hierarchy, we further now try to get insights regarding the flow of rides across the 

diverse road hierarchy in Chengdu. By understanding not only the behavior of pick-ups 

or drop-offs roads separately, but the distribution of both for each ride, we can point to 

the more and less "common" journeys across the city, in relation to road levels. For 

each ride we'll use both road labels previously attached to it (pick-up and drop-off), and 

analyze the distribution of origin level to destination level using the Sankey diagram 

[21]. 

By analyzing the results from diagram (figure 9) and the data table created it (appendix 

1) we can gain a few insights: 

  The distribution of destinations road levels within each origin road level 

group is relatively similar to the distribution of destinations across all 

rides, maintaining the most popular level as tertiary, followed by 

primary, residential, secondary, unclassified, living street and motorway 

as the least popular destination. 

 In contrary, the distribution of pick-ups road levels within each 

destination road level group is relatively similar to the distribution of 

pick-ups across all rides. 

 Intra higher level Vs intra lower level: 47.8% of rides travel within (from 

and to) major roads (tertiary and higher) only while only 9.3% or rides 

travel within minor roads (unclassified and lower). The rest, 42.9% are 

crossing higher and lower levels. 
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Figure 9: Flow distribution of road levels from DiDi rides pick-ups (left) to drop-offs (right).  
For a better visual experiense, small share road levels, such as motorway, trunk and living street, were grouped to their closest hierarchy  group  
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6  Discussion and future work 
 

Chengdu, a capital city in southwest China with an urban population of 11.2 million, 

relies heavily on public transportation including mobility on-demand services, with 

DiDi being the most popular service for ride-sourcing and ride-sharing, with more 

than 8.5 million users. As an emerging sub-category of MoD services, the 

significant societal and environmental benefits of ride-sharing has been deeply 

researched and highly discussed in the last few years. The potential in megacities 

such as New York is enormous, as it has been found that percentage of shared trips 

in the city can potentially be increased from 7.85% to 90.69%, and the percentage 

of time savings can reach 25.75% from 2.38%. 

 

A relatively less studied urban characteristic, the city road hierarchy, reveals itself 

from the data driven case study in Chengdu for the first time. First, it reveals itself 

theoretically from OSM data, and later in practice from DiDi rides pick-ups and 

drop-offs. It is found to be highly diverse, covering vast majority of known driving 

network of city center and comprised of eight different levels. Primary, Tertiary and 

residential roads found to be covering the majority of departures and arrivals across 

the city, as well as the city road network measured length. 

 

Further analyzing this urban layer using available taxi data from DiDi and 

complementary open source data, visual and statistical methods presents different 

distributions of rides departures vs arrivals, with relation to their road levels in the 

city hierarchy. When taking into consideration the large scale of rides in our sample, 

the change in distributions shows significant tendency toward major roads in ride 

pick-ups, and towards minor road in pick-ups. A significant distributions change 

between road level popularity discovers as well when comparing single vs shared 

rides, which take up to 6-7% from the studied dataset. Saying that, the trends in this 

sub-category are less clear in relation to major and minor roads, both across pick-

ups and drop-offs. In addition, the temporal characteristics of the different city road 

levels reveals a wide set of different behaviors, which among them are different 

peak days, hours and durations across weekdays and weekends.  

 

When considering all the findings above it is clear that the characteristics of the city 

road hierarchy, such as its outline, its multi-level diversity and its spatiotemporal 

popularity trends - we believe that this feature can and should be a part of any smart 

ride-service policy design. Emerging smart ride-sharing services, such as Via, 

MOIA and others who applies corner-to-corner pick-up and drop-off policies, can 

especially benefit from leveraging knowledge embedded within city road hierarchy, 

on top of all other online city and service parameters. Considering that avoiding 

specific types of roads, whether minor- residential or major outside of urban areas, 

are part of these services policies main features and distinction - the knowledge and 

characteristics of these roads should be maximized in order to better achieve its 

policy goals. Other ride-sharing companies, such as DiDi and others, can benefit 

from leveraging this knowledge when considering introducing corner-to corner 

services or similar. 
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Our method, results and conclusions are presented above, but is limited by many aspects 

and research gaps, that could be filled by future work. The main limitations of this work 

and its conclusions are presented here.  

Considering a city with urban population of 11.2 million and 5 million cars, any results 

regarding trends in the behavior of specific road level(s) we should be aware that our 

results were not merged with additional urban layers, such as POI data of Chengdu, 

population density, land-use data or public transit stops. These layers were explored by 

other DiDi related research, but not combined so far with city road hierarchy layer, as 

far as we know. Mixing those layers could add additional information regarding 

findings. In addition, it's noticeable that some aspects of the DiDi dataset were not 

leveraged in this work. These range from original aspects such as trajectory data, (which 

found to be incomplete and needed reconstruction) and others such as ride duration, air 

distance, actual distance, evaluated route and evaluated speed – all can be extracted 

using orders and trajectory data manipulation. Analyzing ride actual route in relation to 

road hierarchy, for example, could shed some light on more than the departure and 

arrival roads.  

From a data integrity view, we understand the limitation of open source projects. Our 

main complementary dataset merged with the DiDi data to create the city road hierarchy 

layer is open street maps, which relies on community contribution. As studied by 

Zielstra et al. [20], while this data import built the foundation for the active OSM 

community, the poor quality of the imported road data and additional problems with 

their conversion to the OSM tagging scheme limited OSM data usability and reliability. 

Based on this, it would be interesting to reproduce the results using more official 

dataset, even though the OSM data of Chengdu specifically found as relatively 

versatile, which generally implies towards completeness and accuracy.  

Finally, as we tried to achieve our second goal in this work, The DiDi dataset provides 

GPS accuracy of rides pick-ups and drop-offs, hence the users walking/driving distance 

from their original departure/arrival addresses are not available to us. Additional data 

holding this information, at least for shared rides, will shed light on the potential of 

corner-to-corner policy applications. Additional features of the vehicles such as 

passenger capacity and activity hours could help for future research as well.  
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Appendix 1 
 Pick-ups road to drop-offs road flow distribution, grouped by pick-up road level 

 

 

 

 

 

 

 

 

 

 

 

 

pickup_level dropoff_level all_rides single_rides shared_rides pickup_level dropoff_level all_rides single_rides shared_rides

living_street living_street 1.2% 1.2% 0.3% secondary living_street 1.2% 1.2% 1.1%

living_street motorw ay 0.4% 0.4% 0.3% secondary motorw ay 0.4% 0.4% 0.4%

living_street primary 23.2% 23.4% 20.9% secondary primary 23.8% 23.9% 22.9%

living_street residential 23.8% 23.7% 26.2% secondary residential 22.4% 22.3% 23.4%

living_street secondary 15.6% 15.7% 14.8% secondary secondary 15.1% 15.1% 15.0%

living_street tertiary 24.1% 23.9% 26.5% secondary tertiary 25.2% 25.1% 26.3%

living_street trunk 2.2% 2.2% 2.1% secondary trunk 2.4% 2.4% 2.3%

living_street unclassif ied 9.5% 9.5% 8.8% secondary unclassif ied 9.5% 9.5% 8.7%

motorw ay living_street 1.0% 0.9% 1.2% tertiary living_street 1.1% 1.1% 1.1%

motorw ay motorw ay 0.3% 0.3% 0.0% tertiary motorw ay 0.5% 0.5% 0.5%

motorw ay primary 23.2% 23.9% 14.8% tertiary primary 24.8% 24.9% 24.1%

motorw ay residential 21.8% 21.8% 21.6% tertiary residential 21.3% 21.2% 22.2%

motorw ay secondary 15.5% 15.2% 18.5% tertiary secondary 16.0% 16.0% 15.8%

motorw ay tertiary 25.9% 25.4% 32.1% tertiary tertiary 24.2% 24.1% 24.7%

motorw ay trunk 3.5% 3.6% 2.5% tertiary trunk 2.5% 2.5% 2.3%

motorw ay unclassif ied 8.9% 8.8% 9.3% tertiary unclassif ied 9.6% 9.6% 9.3%

primary living_street 1.1% 1.2% 1.1% trunk living_street 1.0% 0.9% 1.8%

primary motorw ay 0.4% 0.4% 0.3% trunk motorw ay 0.6% 0.6% 0.4%

primary primary 23.7% 23.9% 21.6% trunk primary 24.6% 24.6% 23.9%

primary residential 22.9% 22.8% 24.4% trunk residential 21.3% 21.3% 20.8%

primary secondary 15.4% 15.4% 15.1% trunk secondary 15.4% 15.4% 16.1%

primary tertiary 25.1% 25.0% 27.0% trunk tertiary 25.5% 25.6% 24.7%

primary trunk 2.4% 2.4% 2.3% trunk trunk 2.8% 2.8% 1.9%

primary unclassif ied 8.9% 9.0% 8.3% trunk unclassif ied 8.9% 8.8% 10.5%

residential living_street 1.2% 1.2% 1.2% unclassif ied living_street 1.2% 1.2% 1.3%

residential motorw ay 0.5% 0.5% 0.4% unclassif ied motorw ay 0.4% 0.5% 0.3%

residential primary 24.9% 24.9% 24.1% unclassif ied primary 23.7% 23.8% 22.3%

residential residential 20.8% 20.7% 21.7% unclassif ied residential 22.1% 22.0% 23.5%

residential secondary 16.1% 16.1% 15.8% unclassif ied secondary 16.1% 16.1% 16.1%

residential tertiary 24.4% 24.3% 24.9% unclassif ied tertiary 24.7% 24.6% 26.0%

residential trunk 2.3% 2.3% 2.2% unclassif ied trunk 2.5% 2.5% 2.2%

residential unclassif ied 9.9% 9.9% 9.8% unclassif ied unclassif ied 9.2% 9.3% 8.3%
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Appendix 2 
 Pick-ups road to drop-offs road flow distribution, grouped by drop-off road level 

 

 

pickup_level dropoff_level all_rides single_rides shared_rides pickup_level dropoff_level all_rides single_rides shared_rides

living_street living_street 0.9% 0.9% 0.2% secondary living_street 0.9% 0.9% 0.8%

living_street motorw ay 0.1% 0.1% 0.2% secondary motorw ay 0.2% 0.2% 0.3%

living_street primary 23.8% 23.8% 24.5% secondary primary 23.7% 23.6% 25.2%

living_street residential 20.6% 20.7% 19.0% secondary residential 20.1% 20.2% 18.7%

living_street secondary 17.9% 17.9% 17.1% secondary secondary 16.5% 16.4% 17.0%

living_street tertiary 26.1% 26.2% 25.3% secondary tertiary 27.7% 27.8% 26.8%

living_street trunk 1.9% 1.8% 3.4% secondary trunk 2.2% 2.1% 2.2%

living_street unclassif ied 8.7% 8.6% 10.2% secondary unclassif ied 8.8% 8.8% 9.1%

motorw ay living_street 0.8% 0.8% 0.7% tertiary living_street 0.9% 0.9% 0.8%

motorw ay motorw ay 0.1% 0.1% 0.0% tertiary motorw ay 0.2% 0.2% 0.3%

motorw ay primary 21.9% 21.9% 22.1% tertiary primary 24.6% 24.4% 27.2%

motorw ay residential 20.3% 20.3% 20.1% tertiary residential 19.3% 19.4% 17.8%

motorw ay secondary 15.2% 15.1% 16.3% tertiary secondary 17.5% 17.5% 17.9%

motorw ay tertiary 30.1% 30.0% 31.3% tertiary tertiary 26.6% 26.7% 25.1%

motorw ay trunk 3.0% 3.0% 2.0% tertiary trunk 2.3% 2.3% 2.1%

motorw ay unclassif ied 8.7% 8.8% 7.5% tertiary unclassif ied 8.6% 8.6% 8.8%

primary living_street 0.8% 0.8% 0.7% trunk living_street 0.8% 0.8% 0.8%

primary motorw ay 0.2% 0.2% 0.1% trunk motorw ay 0.2% 0.2% 0.2%

primary primary 23.6% 23.6% 24.3% trunk primary 24.1% 24.0% 26.5%

primary residential 20.1% 20.1% 19.2% trunk residential 18.6% 18.6% 17.9%

primary secondary 16.9% 16.8% 17.5% trunk secondary 17.2% 17.1% 17.8%

primary tertiary 27.8% 27.9% 27.4% trunk tertiary 28.0% 28.1% 26.5%

primary trunk 2.2% 2.2% 2.2% trunk trunk 2.5% 2.5% 1.8%

primary unclassif ied 8.4% 8.4% 8.4% trunk unclassif ied 8.6% 8.6% 8.5%

residential living_street 1.0% 1.0% 0.9% unclassif ied living_street 0.9% 0.9% 0.8%

residential motorw ay 0.2% 0.2% 0.2% unclassif ied motorw ay 0.2% 0.2% 0.2%

residential primary 25.4% 25.2% 27.5% unclassif ied primary 23.0% 22.9% 24.0%

residential residential 18.6% 18.7% 17.3% unclassif ied residential 20.5% 20.5% 20.1%

residential secondary 17.6% 17.6% 17.9% unclassif ied secondary 17.3% 17.3% 17.1%

residential tertiary 26.5% 26.6% 25.3% unclassif ied tertiary 27.7% 27.7% 27.2%

residential trunk 2.1% 2.2% 1.9% unclassif ied trunk 2.1% 2.1% 2.5%

residential unclassif ied 8.7% 8.6% 8.9% unclassif ied unclassif ied 8.4% 8.4% 8.1%


